Math, asked by sunitapal792, 5 months ago

please give me the ans plzzzzz ​

Attachments:

Answers

Answered by spacelover123
14

Given

  • AB = 5 cm
  • ∠A = 3x
  • ∠B = 2x
  • ∠C = x

___________________________

To Find

  • The value of 'x' in the interior angles.
  • The value of AC
  • The value of BC

___________________________

Solution

Firstly, we will find the value of 'x' in the interior angle. So we know the the sum of all angles in any type of triangle is 180°, so we will solve the this equation ⇒ x + 2x + 3x = 180

Let's solve your equation step-by-step

x + 2x + 3x = 180

Step 1: Add the LHS.

⇒ x + 2x + 3x = 180

⇒ 6x = 180

Step 2: Divide 6 from both sides of the equation.

⇒ 6x ÷ 6 = 180 ÷ 6

⇒ x = 30

∴ The value of 'x' is 30°.

∠A ⇒ 3x = 3×30 = 90

∠B ⇒ 2x = 2×30 = 60

∠C ⇒ x = 30

Now, we have to find AC & BC.

Let's find AC first.

⇒ tan60° = \frac{AC}{AB}

⇒ √3 = \frac{AC}{5}

⇒ AC = 5√3 cm

∴ The value of AC is 5√3 cm

Let's find BC next.

⇒ cos60° = \frac{AB}{BC}

\frac{1}{2} =\frac{5}{BC}

BC = 5(2)

⇒ BC = 10 cm

∴ The value of BC is 10 cm

___________________________

Answered by Anonymous
9

question:

from the information given in the figure.find the value of x and also find AC and BC.

solution:

  \purple{ \sf x=30 \degree , AC = 5 \sqrt{3} , BC = 10cm}

Given:

figure.

To find:

values of x,AC and BC?

step by step explanation:

___________________________________

let's find x:

 \sf as \: we \: know :  \sf{sum \: of \: all \: angles \: of\: a \: triangle \:  = 180 \degree}

 \implies \sf x + 2x + 3x = 180 \degree

 \implies  \sf 6x = 180 \degree

 \implies \sf x =  \frac{180}{6}

 \implies \sf x = 30  \degree

___________________________________

let's find AC:

 \implies\sf \sqrt{3}  =  \frac{AC}{AB}

 \implies \sf \sqrt{3}  =  \frac{AC }{5}

 \implies\sf AC = 5 \sqrt{3}

___________________________________

let's find BC:

 \implies \sf \frac{1}{2}  =  \frac{AB}{BC}

 \implies \sf \frac{1}{2 }  =  \frac{5}{ BC }

  \implies \sf BC = 5(2)

 \implies \sf BC = 10cm

___________________________________

therefore:

  \red{ \sf x=30 \degree , AC = 5 \sqrt{3} , BC = 10cm}

Similar questions