Math, asked by pratikwazire, 3 months ago

please give me the answer

Attachments:

Answers

Answered by lumine
2

The solution is in the image

hope it helps you :)

Attachments:
Answered by Anonymous
4

{\pmb{\underline{\sf{Required \:  Solution....}}}}

Take LHS !!

 :  \implies \frac{ \tan {}^{3}θ }{ \sec {}^{2}θ }  +  \frac{ \cot {}^{2} θ }{cosec {}^{2} θ} \\   :  \implies \frac{ \sin θ \times  \sf\red{\cos {}^{2} θ}} { \cos\sf\red{ {}^{3} }θ \times 1 }  +    \frac{ \cos {}^{3} θ  \times  \sf\red{\sin{}^{2} }  θ   }{ \sin \sf\red{ {}^{3}  } \times1 }   \\  :  \implies  \frac{ \sin {}^{3}θ  }{ \cosθ}  +  \frac{ \cos {}^{3}θ  }{ \sin θ}  \\  :  \implies \frac{ \sin {}^{4}θ +  \cos {}^{4} θ}{ \sinθ \times  \cosθ }  \\  :  \implies \:  \frac{ (\sin {}^{2}θ) {}^{2}  + ( \cos {}^{2} θ) {}^{2}    }{ \sinθ \cosθ  }

We know that ;

 \boxed{a {}^{2} + b {}^{2} + 2ab = (a + b) {}^{2}   }

We can write it as ;

\large{\boxed{\bf{\green{a {}^{2} + b {}^{2}   = (a + b) {}^{2} - 2ab }}}}

 :  \implies \frac{ (\sin {}^{2} θ +  \cos{}^{2} θ)  {}^{2}  - 2 \sin {}^{2} θ \times  \cos {}^{2} θ}{ \sinθ \times  \cos θ }  \\  \implies \frac{1 - 2  \sin {}^{2}θ \cos {}^{2}   θ }{ \sin θ \cosθ}  \\  \implies \frac{1}{ \sinθ \cosθ }   -  \frac{2 \sin\sf\red{ {}^{2} }θ \cos \sf\red{{}^{2}}θ  }{ \sf\red{ \sinθ \cosθ }} \sf\red{} \\  :  \implies \sinθ \times  \cosecθ - 2 \sinθ \cosθ \\  = RHS

Hence Proved ;)

LHS = RHS

__________________________

Note Swipe to left to view full Solution

___________________________

\sf\blue{hope \: this \: helps \: you!! \: }

@Mahor2111

_________♬♩♪♩ ♩♪♩♬________

Similar questions