Please give me the answer for the question.
Answers
Answer:
Please find below the solution to the asked query
Step-by-step explanation:
Taking sin2A+sin2B-sin2C
= A + B + C = π
sin 2A + sin 2B - sin 2C = 4 cos A cos B sin C
From the double angle formula:
sin 2Θ = 2 sin Θ cos Θ
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
Since A + B + C = π;
A is a supplement angle of ( B + C )
B is a supplement angle of ( A + C )
C is a supplement angle of ( A + B )
TAKE NOTE that the sine of supplementary angles are equal !!!
sin 2A + sin 2B - sin 2C
... = 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
... = 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
From the Sum of Angle Identity:
sin ( α + ß ) = sin α cos ß + cos α sin ß
sin 2A + sin 2B - sin 2C
= 2 sin A cos A + 2 sin B cos B - 2 sin C cos C
= 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
= 2 ( sin B cos C + cos B sin C ) cos A
+ 2 ( sin A cos C + cos A sin C ) cos B
– 2 ( sin A cos B + cos A sin B ) cos C
= 2 cos A sin B cos C + 2 cos A cos B sin C
+ 2 sin A cos B cos C + 2 cos A cos B sin C
– 2 sin A cos B cos C – 2 cos A sin B cos C
= 2 cos A cos B sin C + 2 cos A cos B sin C
= 4 cos A cos B sin C______(1)
Now taking sin2A+sin2B +sin2C
= If A+B+C=180 degree, then A+B=180-C hence sin(A+B) = sinC, cos(A+B)=-cosC
sin2A + sin 2B +sin2C
= 2 sin(A+B)cos(A-B) + 2sinC cosC
=2sinC cos(A-B)+2sinC cosC
=2sinC (cos(A-b) + cos C)
=2sin C(cos(A-B) - cos(A+B) )
= 2sinC . 2sin A sin B
=4 sinA sin B sin C______(2)
Now dividing (1)/(2) we get ,
sin2A + sin 2B +sin2C/sin2A+sin2B-sin2C=cotA cotB
.
.
Hope this information will clear your doubts about this topic.(◕ᴗ◕✿)