Math, asked by Rajdeep1256, 9 months ago

Please, give me the answer:

The question is from class IX , board SEBA for Assam.

Question: Ex-13.1,question no 7

Shanti Sweets stall was placing an order for making cardboard boxes for packing their sweets. Two sizes of boxes were required. The bigger of dimensions 25 cm × 20 cm × 5 cm and the smaller of dimensions 15 cm × 12cm × 5 cm. For all the overlaps, 5% of the total surface area is required extra. If the cost of the cardboard is Rs 4 for 1000 cm2 , find the cost of cardboard required for supplying 250 boxes of each kind.

Answers

Answered by sethrollins13
37

Given :

  • Dimensions of Big Box = 25cm × 20cm × 5cm.
  • Dimensions of Small Box = 15cm × 12cm × 5cm.

To Find :

  • Cost of Cardboard required for supplying 250 boxes of each kind.

Solution :

For Big Box :

  • Length = 25cm
  • Breadth = 20cm
  • Height = 5cm

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Big\:Box=2(lb+bh+hl)}

Putting Values :

\longmapsto\tt{2(25\times{20}+20\times{5}+5\times{25)}}

\longmapsto\tt{2(500+100+125)}

\longmapsto\tt{2(725)}

\longmapsto\tt\bf{1450{cm}^{2}}

Extra Area of 5 % :

\longmapsto\tt{145{\cancel{0}}\times\dfrac{5}{10{\cancel{0}}}}

\longmapsto\tt{145\times\dfrac{5}{10}}

\longmapsto\tt{\dfrac{725}{10}}

\longmapsto\tt\bf{72.5{cm}^{2}}

Total Area of Big Box :

\longmapsto\tt{1450+72.5}

\longmapsto\tt\bf{1522.5{cm}^{2}}

Area of 250 boxes :

\longmapsto\tt{25{\cancel{0}}\times\dfrac{15225}{1{\cancel{0}}}}

\longmapsto\tt{25\times{15225}}

\longmapsto\tt\bf{380625{cm}^{2}}

So , The Area of 250 boxes is 380625cm..

For Small Box :

  • Length = 15cm
  • Breadth = 12cm
  • Height = 5cm

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Small\:Box=2(lb+bh+hl)}

Putting Values :

\longmapsto\tt{2(15\times{12}+12\times{5}+5\times{15)}}

\longmapsto\tt{2(180+60+75)}

\longmapsto\tt{2(315)}

\longmapsto\tt\bf{630{cm}^{2}}

Extra Area of 5 % :

\longmapsto\tt{630\times\dfrac{5}{100}}

\longmapsto\tt\bf{31.5{cm}^{2}}

Total Area of Small Box :

\longmapsto\tt{630+31.5}

\longmapsto\tt\bf{661.5{cm}^{2}}

Area of 250 boxes :

\longmapsto\tt{25{\cancel{0}}\times{6615}{1{\cancel{0}}}}

\longmapsto\tt{25\times{6615}}

\longmapsto\tt\bf{165375{cm}^{2}}

Now ,

\longmapsto\tt{Area\:of\:both\:boxes=380625+165375}

\longmapsto\tt\bf{546000{cm}^{2}}

Cost of 1000cm² Cardboard = 4

\longmapsto\tt{Cost\:of\:1{cm}^{2}\:Cardboard=\dfrac{4}{1000}}

\longmapsto\tt{546{\cancel{000}}\times\dfrac{4}{{\cancel{1000}}}}

\longmapsto\tt{564\times{4}}

\longmapsto\tt\bf{Rs.2184}

So , The Cost of Cardboard of both boxes is Rs.2184..

Similar questions