Math, asked by Arthavi, 10 months ago

please give me the solution fast​

Attachments:

Answers

Answered by Abhishek474241
5

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • (sin⁴∅-Cos⁴∅+1)Cosec²∅

{\sf{\green{\underline{\large{To\:find}}}}}

  • Value

{\sf{\pink{\underline{\Large{Explanation}}}}}

  • We know that
  • a²-b²=(a+b)(a-b)
  • sin²∅+cos²∅=1

Solution

\rule{200}4

(sin⁴∅-Cos⁴∅+1)Cosec²∅

=>{(sin²∅-Cos²∅+1)(sin²∅+Cos²∅)+1}Cosec²∅

=>{(sin²∅-Cos²∅)(1)+1}Cosec²∅

=>{sin²∅-Cos²∅)+1}Cosec²∅

=>{sin²∅-Cos²∅+1}Cosec²∅

=>{sin²∅-Cos²∅+sin²∅+Cos²∅}Cosec²∅

=>{sin²∅+sin²∅}Cosec²∅

=>{2sin²∅}Cosec²∅

=>2Sin²∅ × 1/sin²∅

=>2

\rule{200}4

Option c is correct

Answered by amitkumar44481
6

QuestioN :

 \tt Solve : \: \:   ({sin}^{4}  \theta - {cos}^{4}  \theta + 1){cosec}^{2}  \theta

  • ( A ) 1.
  • ( B ) - 2.
  • ( C ) 2.
  • ( D ) 0.

AnsWer :

( C ) 2.

Formula :

  • Sin² A + Cos² A = 1.
  • Cosec² A = 1 / Cos² A.

SolutioN :

We have,

 \tt \longmapsto  ({sin}^{4}  \theta - {cos}^{4}  \theta + 1){cosec}^{2}  \theta

We can also Write as,

 \tt \mapsto   {sin}^{2}  \theta +  {cos}^{2}  \theta = 1.

 \tt \mapsto   1 - {sin}^{2}  \theta    =  {cos}^{2}  \theta .

Squaring both sides, We get.

 \tt \mapsto  {(1 -  {sin}^{2}  \theta  ) }^{2} =  ({ {cos}^{2}  \theta )}^{2}  .

 \tt \mapsto   1 +  {sin}^{4}  \theta  - 2 {sin}^{2}  \theta =  {cos}^{4}  \theta.

So, We can substitute Values ( Cos⁴ theta )

 \tt \longmapsto  ({sin}^{4}  \theta - (1 +  {sin}^{4} \theta - 2 {sin}^{2}   \theta) + 1){cosec}^{2}  \theta.

 \tt \longmapsto  ({sin}^{4}  \theta - 1  -   {sin}^{4} \theta  + 2 {sin}^{2}   \theta+ 1){cosec}^{2}  \theta.

 \tt \longmapsto  ( \cancel{{sin}^{4}  \theta} \cancel{ - 1  } \cancel{-   {sin}^{4} \theta } + 2 {sin}^{2}   \theta \cancel{+ 1}){cosec}^{2}  \theta.

 \tt \longmapsto  ( 2 {sin}^{2}   \theta){cosec}^{2}  \theta.

We know,

  • 1 / Sin² A = Cosec² A.

 \tt \longmapsto  2 {sin}^{2}   \theta \times  \dfrac{1}{{sin }^{2}  \theta}

 \tt \longmapsto  2 \cancel{ {sin}^{2}   \theta} \times  \dfrac{1}{ \cancel{{sin }^{2}  \theta}}

 \tt \longmapsto  2 .

Therefore the required value is 2.

Similar questions