please give me the step wise solution of question 19
Attachments:
Answers
Answered by
1
Heya User,
--> We know that :->
--> ( x - 1 )( xⁿ + xⁿ⁻¹ + ... + x² + x + 1 ) = ( xⁿ⁺¹ - +x )
--> However, for x = 2
--> ( 2 - 1 )( 2ⁿ + 2ⁿ⁻¹ + ... + 2² + 2 + 1 ) = ( 2ⁿ⁺¹ - 2 )
=> ( 2ⁿ + 2ⁿ⁻¹ + ... + 2² + 2 + 1 ) = ( 2ⁿ⁺¹ - 2 )
Now, considering the above series :->
--> T₁ + T₂ + T₃ + ... + T(n) = [ 2¹ + 2² + ... + 2ⁿ ] + 2[ 1 + 2 + ... + n]
= [ 2ⁿ⁺¹ - 2 ] + n ( n + 1 )
Hence, Σ T(n) = [ 2ⁿ⁺¹ - 2 ] + n ( n + 1 )
_____________________________________________________________
One line solution -->
Σ T(n) = Σ ( 2ⁿ + 2n ) = Σ ( 2ⁿ) + 2 Σn = [ 2ⁿ⁺¹ - 2 ] + n ( n + 1 )
--> We know that :->
--> ( x - 1 )( xⁿ + xⁿ⁻¹ + ... + x² + x + 1 ) = ( xⁿ⁺¹ - +x )
--> However, for x = 2
--> ( 2 - 1 )( 2ⁿ + 2ⁿ⁻¹ + ... + 2² + 2 + 1 ) = ( 2ⁿ⁺¹ - 2 )
=> ( 2ⁿ + 2ⁿ⁻¹ + ... + 2² + 2 + 1 ) = ( 2ⁿ⁺¹ - 2 )
Now, considering the above series :->
--> T₁ + T₂ + T₃ + ... + T(n) = [ 2¹ + 2² + ... + 2ⁿ ] + 2[ 1 + 2 + ... + n]
= [ 2ⁿ⁺¹ - 2 ] + n ( n + 1 )
Hence, Σ T(n) = [ 2ⁿ⁺¹ - 2 ] + n ( n + 1 )
_____________________________________________________________
One line solution -->
Σ T(n) = Σ ( 2ⁿ + 2n ) = Σ ( 2ⁿ) + 2 Σn = [ 2ⁿ⁺¹ - 2 ] + n ( n + 1 )
Similar questions