Math, asked by pronny94, 3 months ago


please give me varified answer​

Attachments:

Answers

Answered by Anonymous
101

Given

➝(2 - 9z)/(17 - 4z) = 4/5

Now Using Cross multiplication method

➝5(2 - 9z) = 4(17 - 4z)

➝10 - 45z = 68 - 16z

➝10 - 68 = - 16z + 45z

➝-58 = 29z

➝z = -58/29

➝z = -2

Now We verify Our answer

Take

➝(2 - 9z)/(17 - 4z) = 4/5

Now Using Cross multiplication method

➝5(2 - 9z) = 4(17 - 4z)

Put z = -2

➝5(2- 9×-2) = 4(17 - 4×-2)

➝5(2 + 18) = 4(17 + 8 )

➝5(20) = 4(25)

➝100 = 100

LHS = RHS

Answered by Anonymous
92

Answer:

Given :-

  \large \sf \bullet \: \dfrac{2 - 9z}{17 - 4z}  =  \dfrac{4}{5}

Solution :-

On cross multiplication

\implies \large \sf \: 4(17 - 4z) = 5(2 - 9z)

\sf \implies 68 - 16z = 10 - 45z

 \implies  \large \sf \: 16z - ( - 45z )= 68 - 10

 \implies \sf 29z = -58

\sf \implies z =\dfrac{-58}{29}

{  \textsf {\textbf{\pink{ \underline{z =  - 2}}}}}

Similar questions