Math, asked by kashwini77, 5 months ago

please give right answer.its humble request 66​

Attachments:

Answers

Answered by BrainlyPopularman
11

GIVEN :

 \\ \implies \bf y =  \sin^{m} (ax)\cos^{m} (bx)\\

TO FIND :

 \\ \implies \bf \dfrac{dy}{dx} =?\\

SOLUTION :

 \\ \implies \bf y =  \sin^{m} (ax)\cos^{m} (bx)\\

• Differentiate with respect to 'x' –

 \\ \implies \bf  \dfrac{dy}{dx}=   \dfrac{d}{dx}[\sin^{m} (ax)\cos^{m} (bx)]\\

• We know that –

 \\ \longrightarrow \red{\bf \dfrac{d}{dx}(u.v) = u \dfrac{dv}{dx} +v\dfrac{du}{dx}}\\

• So that –

 \\ \implies \bf  \dfrac{dy}{dx}=  \sin^{m} (ax) \dfrac{d}{dx}[\cos^{m} (bx)] +\cos^{m} (bx) \dfrac{d}{dx}[\sin^{m} (ax)]\\

 \\ \implies \bf  \dfrac{dy}{dx}=  \sin^{m} (ax)  \left[m\cos^{m - 1} (bx) \times -b\sin(bx)\right] +\cos^{m} (bx)\left[m\sin^{m - 1} (ax) \times \cos(ax)\right]\\

 \\ \implies \bf  \dfrac{dy}{dx}=m\sin^{m - 1} (ax)\cos^{m - 1} (bx) \left[- b\sin(ax) \sin(bx)+a\cos(ax) \cos(bx)\right]\\

 \\ \implies \bf  \dfrac{dy}{dx}=m\sin^{m - 1} (ax)\cos^{m - 1} (bx) \left[-b\sin(ax) \sin(bx) +a\cos(ax) \cos(bx)\right]\\

 \\ \implies \large{ \boxed{\bf  \dfrac{dy}{dx}=m\sin^{m - 1} (ax)\cos^{m - 1} (bx) \left[a\cos(ax) \cos(bx)-b\sin(ax) \sin(bx) \right]}}\\

Similar questions