please give solution ??
no spam
Answers
Question :-
The internal and external radii of spherical shell are 3 cm and 5 cm respectively. It is melted and recast in to a solid cylinder of diameter 14 cm. Find the height of cylinder. Also, find the total surface area of cylinder.
Given that,
- Inner radius of spherical shell, x = 3 cm
- External radius of spherical shell, y = 5 cm.
- Diameter of cylinder = 14 cm
- So, radius of cylinder, r = 7 cm
Let assume that height of cylinder be h cm.
As it is given that, spherical shell is melted and recast into a solid cylinder.
We know, If one object is melted and recast in to another object, then volume of first object is equal to volume of second object.
So, it means,
On substituting the values, we get
Now, Total Surface Area of cylinder is evaluated as
Hence,
Additional Information :-
Answer:
Question :-
The internal and external radii of spherical shell are 3 cm and 5 cm respectively. It is melted and recast in to a solid cylinder of diameter 14 cm. Find the height of cylinder. Also, find the total surface area of cylinder.
\large\underline{\sf{Solution-}}
Solution−
Given that,
Inner radius of spherical shell, x = 3 cm
External radius of spherical shell, y = 5 cm.
Diameter of cylinder = 14 cm
So, radius of cylinder, r = 7 cm
Let assume that height of cylinder be h cm.
As it is given that, spherical shell is melted and recast into a solid cylinder.
We know, If one object is melted and recast in to another object, then volume of first object is equal to volume of second object.
So, it means,
\begin{gathered}\rm \: Volume_{(cylinder)} = Volume_{(spherical\:shell)} \\ \end{gathered}
Volume
(cylinder)
=Volume
(sphericalshell)
\begin{gathered}\rm \: \pi \: {r}^{2}h \: = \: \dfrac{4}{3}\pi( {y}^{3} - {x}^{3}) \\ \end{gathered}
πr
2
h=
3
4
π(y
3
−x
3
)
\begin{gathered}\rm \: {r}^{2}h \: = \: \dfrac{4}{3}( {y}^{3} - {x}^{3}) \\ \end{gathered}
r
2
h=
3
4
(y
3
−x
3
)
On substituting the values, we get
\begin{gathered}\rm \: {7}^{2} \times h \: = \: \dfrac{4}{3}( {5}^{3} - {3}^{3}) \\ \end{gathered}
7
2
×h=
3
4
(5
3
−3
3
)
\begin{gathered}\rm \: 49 h \: = \: \dfrac{4}{3}(125 - 27) \\ \end{gathered}
49h=
3
4
(125−27)
\begin{gathered}\rm \: 49 h \: = \: \dfrac{4}{3}(98) \\ \end{gathered}
49h=
3
4
(98)
\begin{gathered}\rm \: h \: = \: \dfrac{4}{3} \times 2 \\ \end{gathered}
h=
3
4
×2
\begin{gathered}\rm\implies \:h \: = \: \dfrac{8}{3} \: cm \\ \end{gathered}
⟹h=
3
8
cm
Now, Total Surface Area of cylinder is evaluated as
\begin{gathered}\rm \:TSA_{(cylinder)} \\ \end{gathered}
TSA
(cylinder)
\begin{gathered}\rm \: = 2\pi \: r \: (h \: + \: r) \\ \end{gathered}
=2πr(h+r)
\rm \: = \: 2 \times \dfrac{22}{7} \times 7 \times \bigg(\dfrac{8}{3} + 7\bigg)=2×
7
22
×7×(
3
8
+7)
\rm \: = \: 44 \times \bigg(\dfrac{8 + 21}{3}\bigg)=44×(
3
8+21
)
\begin{gathered}\rm \: = \: 44 \times \dfrac{29}{3} \\ \end{gathered}
=44×
3
29
\begin{gathered}\rm \: = \: \dfrac{1276}{3} \: {cm}^{2} \\ \end{gathered}
=
3
1276
cm
2
Hence,
\begin{gathered}\rm\implies \:TSA_{(cylinder)}= \: \dfrac{1276}{3} \: {cm}^{2} \\ \end{gathered}
⟹TSA
(cylinder)
=
3
1276
cm
2
\rule{190pt}{2pt}
Additional Information :-
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★CSA
(cylinder)
=2πrh
★Volume
(cylinder)
=πr
2
h
★TSA
(cylinder)
=2πr(r+h)
★CSA
(cone)
=πrl
★TSA
(cone)
=πr(l+r)
★Volume
(sphere)
=
3
4
πr
3
★Volume
(cube)
=(side)
3
★CSA
(cube)
=4(side)
2
★TSA
(cube)
=6(side)
2
★Volume
(cuboid)
=lbh
★CSA
(cuboid)
=2(l+b)h
★TSA
(cuboid)
=2(lb+bh+hl)
Hope it helps you
Please mark me as the brainliest and drop some thanks