Math, asked by manish584, 9 months ago

please give solution step by step

according to 10th class​

Attachments:

Answers

Answered by Anonymous
12

 \large\bf\underline {Question:-}

Prove that  \rm \:  \frac{sin \theta - 2sin {}^{3} \theta }{2cos {}^{} \theta - cos \theta }  = tan \theta

 \large\bf\underline {To \: prove:-}

 \rm \:  \frac{sin \theta - 2sin {}^{3} \theta }{2cos {}^{} \theta - cos \theta }  = tan \theta

 \huge\bf\underline{Solution:-}

 \rm \:  \frac{sin \theta - 2sin {}^{3} \theta }{2cos {}^{} \theta - cos \theta }  = tan \theta \\  \\

LHS :-

\mapsto \rm \:  \frac{sin \theta - 2sin {}^{3} \theta }{2cos {}^{3}  \theta - cos \theta}  \\  \\ \mapsto \rm \:  \frac{sin \theta(1 - 2 {sin}^{2} \theta) }{cos \theta(2cos {}^{2}  \theta - 1)}  \\  \\ \mapsto \boxed{ \bf \: sin {}^{2} \theta = 1 -  {cos}^{2}  \theta } \\\\\mapsto \boxed{{   \bf\frac{sin\theta}{cos\theta}= tan\theta} } \\  \\  \mapsto \rm \: tan \theta \frac{(1 - 2(1 - co {s}^{2} \theta)) }{(2 {cos}^{2} \theta - 1)}  \\  \\\rm \mapsto \:   \tan \frac{(1 - 2 + 2 {cos}^{2}  \theta)}{(2 {cos}^{2} \theta - 1) } \\  \\  \rm \mapsto \:   \tan \frac{(2cos {}^{2} \theta - 1) }{ (2 {cos}^{2} \theta - 1) }\\  \\  \mapsto \rm \: tan \theta \frac{ \cancel{(2 {cos}^{2} \theta - 1)} }{ \cancel{(2 {cos}^{2} \theta - 1)} }  \\  \\   \bf= tan  \theta

LHS = RHS

Hence, proved.

━━━━━━━━━━━━━━

Some important formulas:-

★ tan∅ = sin∅/cos∅

★ cot ∅ = cos∅/sin∅

★ tan∅.cot∅ = 1

★ sin²∅ +cos²∅ = 1

★ 1+ tan²∅ = sec²∅

★ 1 +cot²∅ = cosec²∅

Answered by shazia38
2

Answer:

HOPE THIS ATTACHMENT HELPS YOU FRIEND IF YOU LIKE MY ANSWER THEN PLS DROP A LIKE AND MARK ME AS BRAINLIEST

Attachments:
Similar questions