please give solution to above question of class 12 ch- derivatives
Answers
Given : y = Cos⁻¹{ ( 3 + 5 Cosx)/ (5 + 3 Cosx) }
To find : Prove that Cosx = (4 - 5 y₁ )/3 y₁ where y₁ = dy/dx
Solution:
y = Cos⁻¹{ ( 3 + 5 Cosx)/ (5 + 3 Cosx) }
=> Cosy = ( 3+5 Cosx)/ (5 +3 Cosx)
Differentiating wrtx
-Siny . dy/dx = -5Sinx/ (5 + 3 Cosx) + ( 3 + 5 Cosx) (-1/ (5 + 3 Cosx) ²)(-3Sinx)
=> -Siny . y₁ = (-25Sinx - 15SinxCosx +9Sinx +15SinxCosx)/(5 + 3 Cosx) ²
=> -Siny . y₁ = (-16Sinx)/(5 + 3 Cosx) ²
=> Siny . y₁ = (16Sinx)/(5 + 3 Cosx) ² . Eq1
Cosy = ( 3+5 Cosx)/ (5 +3 Cosx)
=> Sin²y = 1 - (( 3+5 Cosx)/ (5 +3 Cosx) )²
=> Sin²y = ( 1 + ( 3+5 Cosx)/ (5 +3 Cosx) ) (1 - ( 3+5 Cosx)/ (5 +3 Cosx) )
=> Sin²y = ( 8 + 8 Cosx )(2 - 2 Cosx) / (5 +3 Cosx) ²
=> Sin²y =16 ( 1 + Cosx )(1 - Cosx) / (5 +3 Cosx) ²
=> Sin²y =16 ( 1 - Cos²x) / (5 +3 Cosx) ²
=> Sin²y =16 ( Sin²x) / (5 +3 Cosx) ²
=> Siny = 4 Sinx/ (5 +3 Cosx)
Substituting in Eq 1
=> (4 Sinx/ (5 +3 Cosx)) . y₁ = (16Sinx)/(5 + 3 Cosx) ²
=> (5 + 3 Cosx) . y₁ = 4
=> 5 y₁ + 3Cosxy₁ = 4
=> 3Cosxy₁ = 4 - 5 y₁
=> Cosx = (4 - 5 y₁ )/3 y₁
QED
Hence proved
Learn More:
y = sin(tan-1 e^{-1}) dy/dx ज्ञात कीजिए
https://brainly.in/question/15286651
y = sin^{-1} 2x sqrt{1-x^{2}} dy/dx ज्ञात कीजिए
https://brainly.in/question/15286655