Math, asked by shlokgupta25jan2015, 3 months ago

please give solution to the question in picture ​

Attachments:

Answers

Answered by Asterinn
34

 \rm \longrightarrow \large \bigg(  \dfrac{ {x}^{p} }{ {x}^{q} } \bigg)^{p + q}  \times \large \bigg(  \dfrac{ {x}^{q} }{ {x}^{r} } \bigg)^{q + r} \times \large \bigg(  \dfrac{ {x}^{r} }{ {x}^{p} } \bigg)^{ r + p}

\rm \longrightarrow \large \bigg(  { {x}^{p  - q} } \bigg)^{p + q}  \times \large \bigg(  { {x}^{q  - r} } \bigg)^{q + r} \times \large \bigg(  { {x}^{r - p} }{ } \bigg)^{ r + p}

\rm \longrightarrow \large \bigg(  { {x} } \bigg)^{{(p  - q)}(p + q)}  \times \large \bigg(  { {x}^{} } \bigg)^{(q  - r)(q + r)} \times \large \bigg(  { {x} }{ } \bigg)^{( r - p)(r + p)}

\rm \longrightarrow \large \bigg(  { {x} } \bigg)^{{( {p}^{2}   -  {q}^{2} )}}  \times \large \bigg(  { {x}^{} } \bigg)^{( {q}^{2} -  {r}^{2} )} \times \large \bigg(  { {x} }{ } \bigg)^{(  {r}^{2}  -  {p}^{2} )}

\rm \longrightarrow \large \bigg(  { {x} } \bigg)^{{{( {p}^{2}   -  {q}^{2} )}} + {( {q}^{2} -  {r}^{2} )} + {(  {r}^{2}  -  {p}^{2} )}}

\rm \longrightarrow \large \bigg(  { {x} } \bigg)^{{{( {p}^{2}   -  {q}^{2} }} + { {q}^{2} -  {r}^{2} } + {  {r}^{2}  -  {p}^{2} )}}

\rm \longrightarrow \large \bigg(  { {x} } \bigg)^{{{( {p}^{2}  -  {p}^{2}   + {q}^{2} }}  -  { {q}^{2}  +  {r}^{2} }  -  {  {r}^{2}  )}}

\rm \longrightarrow \large \bigg(  { {x} } \bigg)^{0} =1

Additional Information :-

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Answered by Mister360
18

Step-by-step explanation:

\\ \\ \qquad \quad{\huge{\color {blue}{\sf\longmapsto \left(\dfrac {x^p}{x^q}\right)^{p+q}\times \left(\dfrac {x^q}{x^r}\right)^{q+p}\times \left(\dfrac {x^r}{x^p}\right)^{r+p}}}}

\\ \\ \qquad \quad\huge {\color {pink}{\sf\longmapsto \left (x^{p-q}\right)^{p+q}\times \left (x^{q-r}\right)^{q+r}\times \left (x^{r-p}\right)^{r+p}}}

\\ \\ \qquad \quad\huge{\color {purple}{ \sf\longmapsto x^{(p-q)(p+q)}\times x^{(q-r)(q+r)}\times x^{(r-p)(r+p)}}}

\\ \\ \qquad \quad\huge{\color {brown}{\sf\longmapsto x^{(p^2-q^2)}\times x^{(q^2-r^2)}\times x^{(r^2-p^2)}}}

\\ \\ \qquad \quad\huge{\color {darkblue}{\sf\longmapsto x^{\left\{(p^2-q^2)+(q^2-r^2)+(r^2-p^2)\right\}}}}

\\ \\ \qquad \quad\huge{\color{Orange}{\sf\longmapsto x^{\left\{p^2-q^2+q^2-r^2+r^2-p^2\right\}}}}

\\ \\ \qquad \quad\huge {\color {gray}{\sf\longmapsto x^{(0+0+0)}}}

\\ \\ \qquad \quad\huge{\color {lime}{\sf\longmapsto x^0}}

\\ \\ \qquad \quad\huge{\color {navy}{\sf\longmapsto 1}}

Learn more:-

\boxed{\begin{array}{c}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end {array}}

Similar questions