Please give solutions of this question
Answers
Given to Prove :-
sin⁶ θ + cos⁶θ = 1 - 3sin²θ cos²θ
Formulaes Used :-
a³ + b³ = ( a + b ) ( a² - ab + b²)
sin²θ + cos²θ = 1
( a + b)² = a² + 2ab + b²
By using Above Formulaes We can solve
Solution:-
sin⁶θ + cos⁶θ = 1 - 3sin²θ cos²θ
Take LHS
sin⁶θ + cos⁶θ = (sin²θ)³ + (cos²θ)³
By using a³ + b³ = ( a + b ) ( a² - ab + b²)
a = sin²θ
b = cos²θ
Plugging in formula
a³ + b³ = ( a + b ) ( a² - ab + b²)
(sin²θ)³ + (cos²θ)³ = (sin²θ + cos²θ) [ (sin²θ)² - sin²θcos²θ + (cos²θ)²]
-sin²θ cos²θ can be written as -3sin²θcos²θ + 2cos²θsin²θ
(sin²θ)³ + (cos²θ)³ = 1 ((sin²θ)² +(cos²θ)² + 2cos² θ sin²θ - 3sin² θ cos²θ)
(sin²θ)² +(cos²θ)² + 2cos²θsin²θ it is in form of (a + b)²=a² + 2ab + b²
(sin²θ)³ + ( cos²θ)³ = 1 [ (sin²θ + cos²θ)² - 3sin²θcos²]
sin⁶θ + cos⁶θ = 1[ 1 - 3sin²θcos²θ]
sin⁶θ + cos⁶θ = 1 -3sin²θcos²θ
Hence proved
Know more :-
Trignometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trignometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trignometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj