Math, asked by esther5795, 4 months ago

please give step by step explanation:

Attachments:

Answers

Answered by Anonymous
5

 \underline {\Large {\bf { Answer : }}}

Find the square root of :

  •  \sf { 5 \dfrac{580}{729} }

 \sf { \longrightarrow \sqrt{ 5 \dfrac{580}{729}} }

Solution:

Here, firstly we'll convert the mixed fraction into proper fraction. So,

 \sf { \longrightarrow \sqrt{ 5 \dfrac{580}{729}} = \sqrt{ \dfrac{729 \times 5 + 580}{729} } }

 \sf { \longrightarrow \sqrt{ 5 \dfrac{580}{729}} = \sqrt{ \dfrac{3645+ 580}{729} } }

 \sf { \longrightarrow \sqrt{ 5 \dfrac{580}{729}} = \sqrt{ \dfrac{4225}{729} } }

Now, as we know that :

\underline{ \boxed {\bf \gray {  \sqrt{ \dfrac{ x }{y} }  =  \dfrac{ \sqrt{x} }{ \sqrt{y} } }}}

 \sf { \longrightarrow \sqrt{ \dfrac{4225}{729} } = \dfrac{ \sqrt{4225} }{ \sqrt{729} }  }

Calculating the value of √4225 :

By prime factorization :

 \begin{array}{c | c}  \sf5& \sf \underline{4225} \\ \sf5& \sf \underline{ \: 845 \: } \\   \sf13& \sf \underline{ \: 169 \: } \\  \sf13& \sf \underline{ \:  \: 13 \:  \: }   \\ \sf& \sf 1 \\ \\ \end{array}

→ 4225 = 5 × 5 × 13 × 13

→ 4225 = 5² × 13²

→ √4225 = √5² × 13²

√4225 = 65

Calculating the value of 729 :

By prime factorization :

 \begin{array}{c | c}  \sf3& \sf \underline{729} \\ \sf3& \sf \underline{ \: 243 \: } \\   \sf3& \sf \underline{ \: 81\: } \\  \sf3& \sf \underline{ \:  \: 27 \:  \: }   \\ \sf3& \sf \underline{ \:  \: 9 \:  \: }   \\ \sf3& \sf \underline{ \:  \: 3 \:  \: }   \\ \sf& \sf 1 \\  \\  \end{array}

→ 729 = 3 × 3 × 3 × 3 × 3 × 3

→ 729 = 3² × 3² × 3²

→ √729 = √3² × 3² × 3²

→ √729 = 3 × 3 × 3

→ √729 = 27

So,

 \sf { \longrightarrow  \dfrac{ \sqrt{4225} }{ \sqrt{729} } = \dfrac{65}{27}  }

Therefore,

 \boxed{\sf\red { \longrightarrow \sqrt{  \dfrac{4225}{729} } = \dfrac{65}{27}  }}

Similar questions