Math, asked by smt16905, 11 months ago

Please give step by step solution

Attachments:

Answers

Answered by codiepienagoya
1

The final answer is L.H.S ≠ R.H.S

Step-by-step explanation:

\ Given \ value:\\\\\frac{\sec \theta - 1}{\sec \theta + 1} = (\cot \theta - \cosec \theta )^2 \\\\\ Solution:\\\\\ Solve \ L.H.S \\\\\frac{\sec \theta - 1}{\sec \theta + 1}\\\\\rightarrow  \frac{\sec \theta - 1}{\sec \theta + 1} \times \frac{\sec \theta - 1}{\sec \theta - 1}\\\\\rightarrow  \frac{(\sec \theta - 1)^2}{(\sec \theta)^2 - (1)^2}  \\\\\rightarrow  \frac{(\sec^2 \theta +1 - 2 \sec \theta)}{\sec^2 \theta - 1}  \\\\

\rightarrow  \frac{(\sec^2 \theta +1 - 2 \sec \theta)}{1+ \tan^2 \theta - 1}  \\\\\rightarrow  \frac{(\sec^2 \theta +1 - 2 \sec \theta)}{\tan^2 \theta}  \\\\\rightarrow  \frac{\sec^2 \theta}{\tan^2 \theta} +\frac{1}{\tan^2 \theta} - 2 \frac{\sec \theta}{\tan^2 \theta}  \\\\\rightarrow  \frac{1}{\cos^2 \theta}\times \frac{\cos^2 \theta}{\sin^2 \theta} +\frac{1}{\tan^2 \theta} - 2 \frac{1}{\cos \theta} \times \frac{\cos^2 \theta}{\sin^2 \theta} \\\\

\rightarrow  \frac{1}{\sin^2 \theta} +\frac{1}{\tan^2 \theta} - 2 \frac{\cos \theta}{\sin^2 \theta} \\\\\rightarrow  \ cosec^2 \theta + \cot^2 \theta - 2 \cot \theta\ cosec \theta \\\\\rightarrow  (\ cosec \theta- \cot \theta )^2\\\\\ taking \ minus \ (- ) \ as \ a \ common \\\\\rightarrow - (\cot \theta - \ cosec \theta)^2 \\\\\ That's \ why \ L.H.S  \ \neq  \ R.H.S \\

Learn more:

  • Proving: https://brainly.in/question/8112701
Similar questions