please give the answer
Attachments:
Answers
Answered by
0
Question :-
Show that (2a - 5)² + 40a = (2a + 5)²
Formula to use :-
☞ (a - b)² = a² - 2ab + b²
☞ (a + b)² = a² + 2ab + b²
For any equation to hold true, the LHS (Left hand side) must be = to the RHS (Right hand side)
Solving LHS and RHS separately,
LHS :-
(2a - 5)² + 4a
- a = 2a
- b = 5
☞ [(2a)² - 2(2a)(5) + (5)²] - 40a
☞ (4a² - 20a + 25) + 40a
Removing the brackets,
☞ 4a² - 20a + 25 + 40a
☞ 4a² + 25 + 20a
By rearranging,
☞ 4a² + 20a + 25
RHS :-
(2a + 5)²
- a = 2a
- b = 5
☞ (2a)² + 2(2a)(5) + (5²)
☞ 4a² + 20a + 25
LHS = RHS
Hence Verified.
Hope it helps!
Happy day!
Similar questions
Science,
1 month ago
Computer Science,
1 month ago
Chemistry,
3 months ago
Math,
3 months ago
Math,
10 months ago