Math, asked by utpalrabha007, 10 months ago

Please give the answer fast​

Attachments:

Answers

Answered by spacelover123
2

According to the question we know that ⇒

  • a = 2
  • b = \frac{-1}{2}
  • c = \frac{-1}{4}

So now we have to verify the properties using the given value.

a) The following property is the commutative property over addition.

Property ⇒

a+b=b+a

Verification ⇒

2+\frac{-1}{2}=\frac{-1}{2} +2

\frac{4}{2} +\frac{-1}{2}=\frac{-1}{2} +\frac{4}{2}

\frac{3}{2} =\frac{3}{2}

a+b=b+a

b) The following property is associative property over addition.

Property ⇒

a+(b+c)=(a+b)+c

Verification ⇒

2+(\frac{-1}{2}+\frac{-1}{4})=(2+\frac{-1}{2})+\frac{-1}{4}

2+(\frac{-2}{4}+\frac{-1}{4})=(\frac{4}{2} +\frac{-1}{2})+\frac{-1}{4}

2+ \frac{-3}{4}=\frac{3}{2} +\frac{-1}{4}

\frac{8}{4} +\frac{-3}{4} = \frac{6}{4} +\frac{-1}{4}

\frac{5}{4} = \frac{5}{4}

a+(b+c)=(a+b)+c

c) The following property is commutative property over subtraction.

Property ⇒

a-b\neq b-a

Verification ⇒

2-\frac{-1}{2} \neq \frac{-1}{2} -2

\frac{4}{2} -\frac{-1}{2}\neq  \frac{-1}{2}-\frac{4}{2}

\frac{5}{2} \neq \frac{-5}{2}

a-b\neq b-a

d) The following property is associative property over multiplication.

Property ⇒

a*(b*c)=(a*b)*c

Verification ⇒

2*(\frac{-1}{2}*\frac{-1}{4})=(2*\frac{-1}{2} )*\frac{-1}{4}

2* \frac{1}{8} = -1*\frac{-1}{4}

\frac{1}{4} =\frac{1}{4}

a*(b*c)=(a*b)*c

e) The following property is distributive property over subtraction.

Property ⇒

a*(b-c)=(a*b)-(a*c)

Verification ⇒

2*(\frac{-1}{2} -\frac{-1}{4})=2*\frac{-1}{2} - 2*\frac{-1}{4}

2*(\frac{-2}{4}-\frac{-1}{4})=-1-\frac{-1}{2}

2*\frac{-1}{4} = \frac{-2}{2}-\frac{-1}{2}

\frac{-1}{2} =\frac{-1}{2}

a*(b-c)=(a*b)-(a*c)

Similar questions