Computer Science, asked by adilalam7808, 5 months ago

please give the correct answer​

Attachments:

Answers

Answered by XxItsPriNcexX
2

\huge✎\fbox \orange{QUE} ST  \fbox\green{ION}☟

Write down the syntax with reference to HTML.

\huge✍︎\fbox\orange{ÂŇ}\fbox{SW} \fbox\green{ÊŘ}:

Brother/Sister your correct answers are:

(i) Ordered List:

<ol type="I">

 <li>Cricket</li>

 <li>Football</li>

 <li>Basketball</li>

</ol>

(ii) Input Tag:

<form action="/action_page.php">

<label for="fname">First name:</label>

<input type="text" id="fname" name="fname"><br><br>

<label for="lname">Last name:</label>

<input type="text" id="lname" name="lname"><br><br>

<input type="submit" value="Submit">

</form>

(iii) Form Tag:

<!DOCTYPE html>

<html>

  <head>

     <title>HTML form Tag</title>

  </head>

  <body>

     <form action = "/cgi-bin/hello_get.cgi" method = "get">

        First name:  

        <input type = "text" name = "first_name" value = "" maxlength = "100" />

        <br />

         

        Last name:  

        <input type = "text" name = "last_name" value = "" maxlength = "100" />

        <input type = "submit" value ="Submit" />

     </form>

  </body>

</html>

(iv) Marquee Tag:

<marquee attribute_name = "attribute_value"....more attributes>

  One or more lines or text message or image

</marquee>

(v) Inserting a Picture:

<img src="url" alt="alternatetext">

\footnotesize\bold\red{\overbrace{\underbrace \mathbb\blue{Please \:  Mark \:  As \:  The \:  Brainliest\: If\: It\: Satisfied\:You}}}

꧁Hopes so that this will help you,꧂

♥️With Love♥️

✌︎Thanking you, your one of the Brother of your 130 Crore Indian Brothers and Sisters.✌︎

\large\red{\underbrace{\overbrace\mathbb{\colorbox{aqua}{\colorbox{blue}{\colorbox{purple}{\colorbox{pink}{\colorbox{green}{\colorbox{gold}{\colorbox{silver}{\textit{\purple{\underline{\red{《❀PŘÎ᭄ŇCĒ✿》࿐}}}}}}}}}}}}}}

Answered by Lifecoach
0

Let a, b and c be the radii of the three circles. We first draw the lines AA', BB' and CC' perpendicular to line L. B'C, CA' and BA" are parallel to line L.

three tangent circles solution

Let x = B'C, y=A'C and z = BA". Pythagora's theorem applied to the right triangle BCB' gives

x 2 + BB' 2 = BC 2

Note that BB' = b - c and BC = b + c. The above equation may be written as follows

x 2 + (b - c) 2 = (b + c) 2

Expand the above, group like terms and solve for x

x 2 = 4 b c

x = 2 Square Root( b c )

Use Pythagora's theorem to triangle AA'C to obtain

y 2 + (a - c) 2 = (a + c) 2

Expand, group like terms and solve for y

y 2 = 4 a c

y = 2 Square Root( a c )

Use Pythagora's theorem to triangle AA"B to obtain

z 2 + (a - b) 2 = (a + b) 2

Similar questions