Physics, asked by adyamail1002, 11 months ago

Please give the proper solution with the whole process.

❌❌Don't spam❌❌

Given ans:5:8.​

Attachments:

Answers

Answered by nirman95
50

Answer:

Given:

The ratios of diameter, length and resistivity has been provided.

To find:

Ratio of resistance of the 2 wires.

Formulas used:

R =   \rho \times \frac{l}{a}  \\

where "ρ" is the resistivity, "l" is the length and "a" is the area

Now if we express this Equation in terms in diameter , we get

R =   \rho \times \frac{l}{( \frac{\pi {d}^{2} }{4}) }  \\

 =  > R =  \frac{4}{\pi} ( \rho \frac{l}{ {d}^{2} } ) \\

Calculation:

If we take ratio of all quantities :

 \frac{R1}{R2}  =  \frac{ \rho1}{ \rho2}  \times  \frac{l1}{l2}  \times   { (\frac{d2}{d1} )}^{2}  \\

 \frac{R1}{R2}  =  \frac{4}{9}  \times  \frac{5}{18}  \times ( { \frac{3}{2} )}^{2}  \\

 \frac{R1}{R2}  =  \frac{5}{18}  \\

So the final answer is :

 \boxed{ ratio \:  = \frac{R1}{R2}  =  \frac{5}{18} } \\


ritik14370: good
Anonymous: awesome
Anonymous: Great Añswer!
TheNightHowler: great !!!
Anonymous: awesome äñswer
Anonymous: Great
Anonymous: great.
RoyalRajput379: Superb:)
Anonymous: Fabulous Answer..!
Answered by EliteSoul
60

Answer:

{\boxed{\sf{Answer=c)5\::\:18}}}

Explanation:

\bf{Given}\begin{cases}\sf{l_1 : l_2 = 5 : 18 } \\\sf{D_1 : D_2 = 2 : 3 } \\\sf {P_A : P_B = 4 : 9 }\\\sf {R_1 : R_2 =\:?}\end{cases}

Now,

\sf \frac{R_1}{R_2} = \frac{P_A}{P_B} \times \frac{l_1}{l_2} \times ({\frac{D_2}{D_1})}^{2}

\rightarrow\sf \frac{R_1}{R_2} = \frac{4}{9} \times \frac{5}{18} \times ({\frac{3}{2})}^{2}

\rightarrow\tt \frac{R_1}{R_2} = \frac{4}{9} \times \frac{5}{18}\times \frac{9}{4} \\\rightarrow\sf \frac{R_1}{R_2} = \frac{180}{648}

\rightarrow{\boxed{\tt{ \frac{R_1}{R_2} = \frac{5}{18}}}}

\therefore\bold{\underline{R_1 : R_2 = 5 : 18 }}


Anonymous: Awesome Brother
Anonymous: Super
Similar questions