please Give the right answer

Answers
Question:
Solve the simultaneous equations 47x + 31y = 63 & 31x + 47y = 15.
Answer:
The solution of the given simultaneous equations is ( x, y ) = ( 2, - 1 ).
Step-by-step-explanation:
The given simultaneous equations are
47x + 31y = 63 - - - ( 1 ) &
31x + 47y = 15 - - - ( 2 )
By adding equations ( 1 ) & ( 2 ), we get,
47x + 31y + ( 31x + 47y ) = 63 + 15
⇒ 47x + 31y + 31x + 47y = 78
⇒ 78x + 78y = 78
⇒ x + y = 1 - - - [ Dividing by 78 ]
⇒ x = 1 - y
⇒ x = - y + 1
By substituting this value in equation ( 2 ), we get,
31x + 47y = 15 - - - ( 2 )
⇒ 31 * ( - y + 1 ) + 47y = 15
⇒ - 31y + 31 + 47y = 15
⇒ 16y = 15 - 31
⇒ 16y = - 16
⇒ y = - 16 ÷ 16
⇒ y = - 1
Now,
x = - y + 1
⇒ x = - ( - 1 ) + 1
⇒ x = 1 + 1
⇒ x = 2
∴ The solution of the given simultaneous equations is ( x, y ) = ( 2, - 1 ).