Math, asked by binit766, 1 month ago

please give the solution ​

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\dfrac{1+cot(\theta)}{sin(\theta)}+\dfrac{1+tan(\theta)}{cos(\theta)}}

\sf{=\dfrac{1+\dfrac{cos(\theta)}{sin(\theta)}}{sin(\theta)}+\dfrac{1+\dfrac{sin(\theta)}{cos(\theta)}}{cos(\theta)}}

\sf{=\dfrac{\dfrac{sin(\theta)+cos(\theta)}{sin(\theta)}}{sin(\theta)}+\dfrac{\dfrac{cos(\theta)+sin(\theta)}{cos(\theta)}}{cos(\theta)}}

\sf{=\dfrac{sin(\theta)+cos(\theta)}{sin^2(\theta)}+\dfrac{cos(\theta)+sin(\theta)}{cos^2(\theta)}}

\sf{=\{sin(\theta)+cos(\theta)\}\bigg\{\dfrac{1}{sin^2(\theta)}+\dfrac{1}{cos^2(\theta)}\bigg\}}

\sf{=\{sin(\theta)+cos(\theta)\}\bigg\{\dfrac{sin^2(\theta)+cos^2(\theta)}{sin^2(\theta)\,cos^2(\theta)}\bigg\}}

\sf{=\{sin(\theta)+cos(\theta)\}\bigg\{\dfrac{1}{sin^2(\theta)\,cos^2(\theta)}\bigg\}}

\sf{=\dfrac{sin(\theta)+cos(\theta)}{sin^2(\theta)\,cos^2(\theta)}}

\sf{=\dfrac{sin(\theta)}{sin^2(\theta)\,cos^2(\theta)}+\dfrac{cos(\theta)}{sin^2(\theta)\,cos^2(\theta)}}

\sf{=\dfrac{1}{sin(\theta)\,cos^2(\theta)}+\dfrac{1}{sin^2(\theta)\,cos(\theta)}}

\sf{=\dfrac{1}{sin(\theta)}\cdot\dfrac{1}{cos^2(\theta)}+\dfrac{1}{sin^2(\theta)}\cdot\dfrac{1}{cos(\theta)}}

\sf{=cosec(\theta)\cdot\,sec^2(\theta)+cosec^2(\theta)\cdot\,sec(\theta)}

\sf{=cosec(\theta)\,sec^2(\theta)+cosec^2(\theta)\,sec(\theta)}

Similar questions