Math, asked by Zafarzehra56, 10 months ago

Please give the solution of both of them ​

Attachments:

Answers

Answered by vienchiez
1

Answer:

21.

Let radius be 7x and height be 3x.

Volume =12474cm³

=πr²h=12474cm³

=22/7×(7x)²×3x=12474

=22×7x²×3x=12474

=x³=12474/(22×21)

=x³=27

=x=3

i.e., radius =7x=7×3=21cm

height =3x=3×3 =9cm

Now, CSA of cylinder

=2πrh

=2×22/7×21×9

=1188cm²

TSA of cylinder

=2πr(h+r)

=2×22/7×21(9+21)

=3960cm²

22.

Given:

radius,r =36cm=0.36m

height, h=3.5m

Now, cost of painting 20 cylindrical pillars at Rs 3 per m²

=Rs 3 ×20 ×CSA of pillar

= Rs 60× 2πrh

= Rs 60 × 2×22/7 × 0.36 ×3.5

= Rs 475.2

Answered by anjali30703
1

Answer:

21 )

Radius of cylinder is 21cm,

Height of cylinder is 9 cm.

Curved surface area of cylinder is 1188 cm^2.

And

Total surface area of cylinder is 3960 cm^2.

22)

Cost of painting at the rate of rs 3 per square meter = rs 475.2

Step-by-step explanation:

Given

Volume of cylinder is 12474 cm^3

Let the radius of cylinder be 7 x

And

Height of cylinder be 3 x respectively.

According to the question

Volume of cylinder = 12474 cm^3

\pi {r}^{2} h \:  =  \: 12474 \:  {cm}^{3} \\  \frac{22}{7}  \:  \times  \: 7x \:  \times  \: 7x \:  \times  \: 3x \:  =  \: 12474 \:  {cm}^{3}  \\  {22}  \:  \times  \: x \:  \times  \: 7x \:  \times 3x \:  =  \: 12474 {cm}^{3}  \\ 22 \:  \times  \: 21 {x}^{3}  \:  \:  \:  =  \: 12474 \:  {cm}^{3}  \\ 462  \: {x}^{3}  \:  \:  =  \: 12474 \:  {cm}^{3}  \\  {x}^{3}  \:  =  \:  \frac{12474}{462}  \:  { \: cm}^{3}  \\  {x}^{3}  \:  =  \: 27 \:  {cm}^{3}  \\ x \:  =  \:  \sqrt[3]{27 \: cm ^{3}  }  \\ x \:  =  \:  \sqrt{3cm \times  \: 3cm \times  \: 3cm}  \\ x =  \: 3cm

7x = 7 × 3 cm = 21 cm

3x = 3 × 3 cm = 9 cm

Hence

Radius of cylinder (r) = 7 x = 21 cm

And

Height of cylinder (h) = 3x = 9 cm.

curved \: surface \: area \: o f \: cylinder \:  =  \: 2\pi \: rh \\ curved \: surface \: area \: of \: cylinder \:  =  \: 2 \times  \frac{22}{7}  \times 21cm \:  \times 9cm \\ curved \: surface \: area \: of \: cylinder \:  = 2 \times 22 \:  \times  \: 3cm \:  \times 9 \: cm \\ curved \: surface \: area \: of \: cylinder =  \: </u></em><em><u>4</u></em><em><u>4</u></em><em><u>\:  \times  {27cm}^{2}  \\ curved \: surface \: area \: of \: cylinder \:  =  \:  {1</u></em><em><u>1</u></em><em><u>8</u></em><em><u>8</u></em><em><u> \: cm}^{2}

Curved surface area of cylinder os 1188 cm &^2.

total \: surface \: area \: of \: cylinder \:  =  \: 2\pi \:r (r \:  +  \: h) \\ total \: surface \: area \: of \: cylinder \:  =  \: 2 \:  \times \:  \frac{22}{7}  \:  \times 21 \: (9 \:  +  \: 21) \:  {cm}^{2}  \\ total \: surface \: area \: of \: cylinder \:  =  \: 2 \: \times  22 \:  \times 3 \: \times  30 \:  {cm}^{2}  \\ total \: surface \: area \: of \: cylinder \:  =  \: 44 \:  \times 90 \:  {cm}^{2}  \\ total \: surface \: area \: of \: cylinder \:  =  \: 3960 \:  {cm}^{2}

Total surface area of cylinder is 3960 cm^2.

22) Given

Radius of one piller = 36 cm = 0.36 m

Height of one piller = 3.5 m

Curved surface area of one piller = 2πrh

Curved surface area of one piller = 2 ×22/7 × 0.36 × 3.5 cm^2

Curved surface area of one piller = 2 × 22 × 0.36 × 0.5 cm^2

Curved surface area of one piller = 7.92 cm^2

Curved surface area of 20 such pillers = 20 × 7.92 cm^2

Curved surface area of 20 such pillers = 158.4 cm^2

Cost of painting at the rate of rs 3 per square meter = 3 × 158.4

Cost of painting at the rate of rs 3 per square meter = rs 475.2

Similar questions