Math, asked by 17sw010158, 7 months ago

Please give this answer if correct I will mark as brain list please it's urgent​

Attachments:

Answers

Answered by prince5132
14

GIVEN :-

 \\  \red \bigstar \displaystyle \tt \: (7 ^{ - 1}  - 8 ^{ - 1} ) ^{ - 1}  - (3 ^{ - 1}   - 4 ^{ - 1} ) ^{ - 1}  \\

TO FIND :-

 \\  \red \bigstar \displaystyle \tt \: value \: of \:   \: (7 ^{ - 1}  - 8 ^{ - 1} ) ^{ - 1}  - (3 ^{ - 1}   - 4 ^{ - 1} ) ^{ - 1}  \\

SOLUTION :-

 \\  :  \implies \displaystyle \tt \: (7 ^{ - 1}  - 8 ^{ - 1} ) ^{ - 1}  - (3 ^{ - 1}  - 4 ^{ - 1} ) ^{ - 1}  \\   \\

 \orange\bigstar \red{ \tt By \ using \ identity :- a^{-1} = \dfrac{1}{a}} \\ \\

\displaystyle \tt  :  \implies \Bigg \lgroup \bigg(  \frac{1}{7}   -  \dfrac{1}{8} \bigg)  ^{ - 1}  \Bigg \rgroup -  \Bigg \lgroup \bigg(  \frac{1}{3}   -  \dfrac{1}{4} \bigg)  ^{ - 1}  \Bigg \rgroup \\  \\

\displaystyle \tt  :  \implies \Bigg \lgroup \bigg(  \frac{1 \times 8}{7 \times 8}   -  \dfrac{1 \times 7}{8 \times 7} \bigg)  ^{ - 1}  \Bigg \rgroup -  \Bigg \lgroup \bigg(  \frac{1 \times 4}{3 \times 4}   -  \dfrac{1 \times 3}{4 \times 3} \bigg)  ^{ - 1}  \Bigg \rgroup \\  \\

\displaystyle \tt  :  \implies \Bigg \lgroup \bigg(  \frac{8}{56}   -  \dfrac{7}{56} \bigg)  ^{ - 1}  \Bigg \rgroup -  \Bigg \lgroup \bigg(  \frac{4}{12}   -  \dfrac{3}{12} \bigg)  ^{ - 1}  \Bigg \rgroup \\  \\

\displaystyle \tt  :  \implies \Bigg \lgroup \bigg(  \frac{8 - 7}{56}    \bigg)  ^{ - 1}  \Bigg \rgroup -  \Bigg \lgroup \bigg(  \frac{5 - 3}{12}    \bigg)  ^{ - 1}  \Bigg \rgroup \\  \\

\displaystyle \tt  :  \implies \Bigg \lgroup \bigg(  \frac{1}{56}    \bigg)  ^{ - 1}  \Bigg \rgroup -  \Bigg \lgroup \bigg(  \frac{1}{12}    \bigg)  ^{ - 1}  \Bigg \rgroup \\  \\

\displaystyle \tt  :  \implies \bigg(  \frac{56}{1}    \bigg)   -   \bigg(  \frac{12}{1}    \bigg)     \\  \\

\displaystyle \tt  :  \implies \dfrac{56 - 12}{1}  \\  \\

 \red \bigstar  \underline{\boxed{\displaystyle \tt \: (7 ^{ - 1}  - 8 ^{ - 1} ) ^{ - 1}  - (3 ^{ - 1}   - 4 ^{ - 1} ) ^{ - 1}   = 44  }} \\  \\

  \therefore \: \underline{ \displaystyle \tt The  \: Required  \: Answer \:  is  \: 44 } \\  \\

Option (1) ✅

Answered by Anonymous
10

Given Expression :-

(7-¹ – 8-¹)-¹ – (3-¹ – 4-¹)-¹

How To Solve?

Convert Negative Powers into positive and then Subtract them.

Solution :-

\sf{( {7}^{ - 1}  -  {8}^{ - 1} ) - ( {3}^{ - 1} -  {4}^{ - 1} )}

{ (\dfrac{1}{7}  -  \dfrac{1}{8}) }^{ - 1}  -  { (\dfrac{1}{3}  -  \dfrac{1}{4})}^{ - 1 }

( { \dfrac{1}{56}) }^{ - 1}  -  { (\dfrac{1}{12} )}^{ - 1}

\sf{56 - 12}

\underline{\boxed{\bf\red{44}}}

Hence, Correct Answer = 44.

Similar questions