Math, asked by manjumalviya09, 1 month ago

please give this answer WHO will give the corret he or she will marked as Briant answer​

Attachments:

Answers

Answered by GraceS
4

\sf\huge\bold{Answer:}

Given :

 \tt\  \bigg(\frac{2}{5}  \bigg) {}^{3}  \div   \bigg(\frac{2}{5}  \bigg) {}^{5}  \\

To find :

Simplest form

Solution :

 \tt\  =  \bigg(\frac{2}{5}  \bigg) {}^{3}  \div   \bigg(\frac{2}{5}  \bigg) {}^{5}  \\

  • Identity used :

 \boxed{  \bf\red{a {}^{m} \div a {}^{n} = a {}^{m - n}   }}

 =  \tt\  \bigg(\frac{2}{5}  \bigg) {}^{3 - 5}    \\

 =  \tt\  \bigg(\frac{2}{5}  \bigg) {}^{ - 2}  \\

 \boxed{ \bf\red{a {}^{ - x} =  \frac{1}{a {}^{x} }  } }

 =  \tt\  \bigg(\frac{5}{2}  \bigg) {}^{2}   \\

 =    \tt\  \bigg(\frac{5 \times 5}{2 \times 2}  \bigg)    \\

 =  \tt \:  \frac{25}{4}  \\

 \boxed{\tt\  \purple{  :⟶\bigg(\frac{2}{5}  \bigg) {}^{3}  \div   \bigg(\frac{2}{5}  \bigg) {}^{5} =  \frac{25}{4}  }} \\

Answered by Parththebestanswerer
16

Answer:

Step-by-step explanation:

(\frac{2}{5})^{3} / (\frac{2}{5})^{5}=(\frac{2}{5})^{3-5}=(\frac{2}{5})^{-2}=(\frac{5}{2})^{2}=(\frac{25}{4})

Similar questions