Math, asked by navyanarayani744, 6 hours ago

please gives answerrrrrrr asap​

Attachments:

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\: - 5 \leqslant \dfrac{2x}{5} + 1 <  - 1 \:  \: where \: x \:  \in \: N

can be rewritten as

\rm :\longmapsto\: - 5 \leqslant \dfrac{2x + 5}{5} <  - 1 \:

On multiply by 5, each term we get

\rm :\longmapsto\: - 25 \leqslant 2x + 5 <  - 5

On Subtracting 5, from each term, we get

\rm :\longmapsto\: - 25 - 5 \leqslant 2x + 5  - 5<  - 5 - 5

\rm :\longmapsto\: - 30 \leqslant 2x<  - 10

On dividing by 2, each term we get

\rm :\longmapsto\: - 15 \leqslant x<  - 5

\bf\implies \:x \:  \in \: [ - 15, \:  - 5)

As x is a natural number,

So, there is no solution.

Additional Information :-

Let take one more example of same type!!!

Question :- Solve the following inequality

\rm :\longmapsto\: - 5 \leqslant \dfrac{2x}{5} + 1 < 3 \:  \: where \: x \:  \in \: N

Solution :-

\rm :\longmapsto\: - 5 \leqslant \dfrac{2x + 5}{5} <  3\:

On multiply by 5, each term we get

\rm :\longmapsto\: - 25 \leqslant 2x + 5 < 15

On Subtracting 5 from each term, we get

\rm :\longmapsto\: - 25  - 5\leqslant 2x + 5 - 5 < 15 - 5

\rm :\longmapsto\: - 30\leqslant 2x < 10

On dividing each term by 2, we get

\rm :\longmapsto\: - 15\leqslant x < 5

As x is a natural number,

So,

\bf\implies \:x \:  =  \:  \{1,2,3,4 \}

More about inequalities

\boxed{ \sf{ \:x > y \:  \implies \:  - x <  - y}}

\boxed{ \sf{ \:x  <  y \:  \implies \:  - x  >   - y}}

\boxed{ \sf{ \:x  \geqslant  y \:  \implies \:  - x  \leqslant   - y}}

\boxed{ \sf{ \:x   \geqslant   y \:  \implies \:  - x   \leqslant    - y}}

Similar questions