Math, asked by Priyankasahu325, 1 year ago

please guys need your help ​

Attachments:

Answers

Answered by Anonymous
0

Answer:

148/111

Step-by-step explanation:

ratio of the sum of the terms=7n+1/4n+27

n/2(2A+(n-1)D)=7n+1

-------------------    ------

n/2(2a+(n-1)d)    4n+27

2A+(n-1)D=7n+1

--------------  -------

2a+(n-1)d   4n+27

A+(n-1)D/2=7n+1

--------------   ------

a+(n-1)d/2   4n+27

now  we require the LHS to be

A+10D

--------

a+10d

so ,(n-1)D/2=10D

or, n-1=20

or,n=21

so if we substite the value n=21,we will get the ratio of 11th term

ratio of the 11th terms=7*21+1)/(4*21+27)

=148/111

aliter;

to get the ratio of the mth term from the ratio of the given nth terms

use the formula

n=2m-1

like in this case n=2*11-1=21

for futher queries,(ICSE or cbse questions) do inbox me

Answered by Anonymous
1

SOLUTION:-

There are 2 A.P. with different first term & common difference for the first A.P.

For the first A.P.

⚫Let first term be a

⚫common difference be d

⚫sum of nth term

 =  >  {}^{S} n =  \frac{n}{2} [2a + (n - 1)d]

&

nth term=an =a+(n-1)d

For the second A.P.

⚫Let first term=A

⚫common difference= D

So,

⚫Sn=n/2[2A+(n-1)D]

⚫nth term= An= A+(n-1)D

We need to find ratio of 11th term:

 =  >  \frac{ {}^{a} 11 \: of \: first \: A.P.}{ {}^{a}11 \: of \: second \: A.P } \\  \\  =  >  \frac{a + (11 - 1)d}{A + (11 - 1)D}   \\  \\  =  >  \frac{a + 10d}{A+ 10D}

Given:

 \frac{Sum \: of \: n \: terms \: of \: 1st \: A.P}{Sum \: of \: n \: terms \: of \: 2nd \: A.P.}  =  \frac{7n + 1}{4n + 27}

 =  >  \frac{ \frac{n}{2} [2a + (n - 1)d]}{ \frac{n}{2}[2A + (n - 1)D]}  =  \frac{7n + 1}{4n + 27}  \\  \\  =  >  \frac{[2a + (n - 1)d]}{[2A + (n - 1)D]}  =  \frac{7n + 1}{4n + 27 }  \\  \\   =  >  \frac{2[a + ( \frac{n - 1}{2})d] }{2[A + ( \frac{n - 1}{2} )D]}  =  \frac{7n + 1}{4n + 27}  \\  \\  =  >  \frac{[a + ( \frac{n - 1}{2} )d]}{[a + ( \frac{n - 1}{2})D] }  =  \frac{7n + 1}{4n + 27} ...............(1)

We need to find:

 \frac{a + 10d}{A + 10D}

Hence,

 \frac{n - 1}{2}  = 10 \\  \\  =  > n - 1 = 20 \\  \\  =  > n = 20  + 1 \\  \\  =  > n = 21

Putting the value of n in equation (1), we get;

 \frac{a + ( \frac{21 - 1}{2} )d}{A + ( \frac{21 - 1}{2})D}  =  \frac{7 \times 21 + 1}{4 \times 21 + 27} \\  \\  =  >  \frac{a + ( \frac{20}{2})d }{A +  (\frac{20}{2} )D}   =  \frac{147 + 1}{84  + 27}  \\  \\  =  >  \frac{a + 10d}{A+ 10D}  =  \frac{148}{111}  \\

Hence,

The ratio of 11th term is 148:111.

Hope it helps ☺️

Similar questions