Please help!! 100 points! Help!
Attachments:
Divyankasc:
im getting 4=0 at last ://
Answers
Answered by
7
hope this helps .....
Attachments:
Answered by
3
log² ( 1 + 4/x ) + log²{ 1 - 4/(x + 4)} = 2log² { 2/(x -1) -1 }
log² ( 1 + 4/x ) + log²{( x +4 - 4 )/(x + 4) }= 2log² { 2 - ( x -1) }/(x -1) }
log² ( 1 + 4/x ) + log²{x/( x + 4) } = 2log² { (3-x)/( x - 1) }
log²( 1 + 4/x ) + log²( 1/( 1 + 4/x ) } = 2log² (3 - x )/(x -1)
log²(1 +4/x ) + { -log(1 + 4/x) }² =2 log² (3 -x)/(x -1)
log²( 1 + 4/x ) + log²( 1+ 4/x ) = 2log²(3 -x)/(x -1)
2log²( 1 + 4/x ) = 2log²( 3 -x )/(x -1)
{ log( 1+ 4/x ) }² = { log(3 -x )/(x -1)} ²
log( 1+ 4/x ) = ± log(3 -x )/( x -1)
log(1 +4/x ) = log(3 -x )/(x -1)
(1 + 4/x ) = (3 -x )/( x -1)
(x +4)(x -1)= 3x -x²
x² +4x -x -4 = 3x -x²
2x² - 4 = 0
x = ± √2
again,
(x + 4) ( x -1) = - x ( 3 - x )
x² +3x -4 = -3x + x²
6x = 4
x = 2/3
now, for log to be defined ,
(1 + 4/x ) > 0 ,=> x > 0 , x < -4
(3 - x)/(x -1) > 0 => 1 < x < 3
if you see wave curve line then,
common interval is
1 < x < 3
so, x = √2
hence, answer is x = √2
log² ( 1 + 4/x ) + log²{( x +4 - 4 )/(x + 4) }= 2log² { 2 - ( x -1) }/(x -1) }
log² ( 1 + 4/x ) + log²{x/( x + 4) } = 2log² { (3-x)/( x - 1) }
log²( 1 + 4/x ) + log²( 1/( 1 + 4/x ) } = 2log² (3 - x )/(x -1)
log²(1 +4/x ) + { -log(1 + 4/x) }² =2 log² (3 -x)/(x -1)
log²( 1 + 4/x ) + log²( 1+ 4/x ) = 2log²(3 -x)/(x -1)
2log²( 1 + 4/x ) = 2log²( 3 -x )/(x -1)
{ log( 1+ 4/x ) }² = { log(3 -x )/(x -1)} ²
log( 1+ 4/x ) = ± log(3 -x )/( x -1)
log(1 +4/x ) = log(3 -x )/(x -1)
(1 + 4/x ) = (3 -x )/( x -1)
(x +4)(x -1)= 3x -x²
x² +4x -x -4 = 3x -x²
2x² - 4 = 0
x = ± √2
again,
(x + 4) ( x -1) = - x ( 3 - x )
x² +3x -4 = -3x + x²
6x = 4
x = 2/3
now, for log to be defined ,
(1 + 4/x ) > 0 ,=> x > 0 , x < -4
(3 - x)/(x -1) > 0 => 1 < x < 3
if you see wave curve line then,
common interval is
1 < x < 3
so, x = √2
hence, answer is x = √2
Similar questions