Math, asked by NITESH761, 1 month ago

please help and please don't scam. itne bhi easy nhi h mere Question. jaldi nhi h. shanti se ek ka to answer de do.​

Attachments:

Answers

Answered by dhanyatm04
0

I think the answer is 1.15

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Given that,

↝ There are 3 deck of cards, each deck has 6 cards marked 2, 3, 4, 5, 6, 7.

↝ Since, 1 card is drawn from each deck.

Let assume that

\rm :\longmapsto\:x_1 \: is \: drawn \: from \: deck \: 1

\bf\implies \:2 \leqslant x_1 \leqslant 7

\rm :\longmapsto\:x_2 \: is \: drawn \: from \: deck \: 1

\bf\implies \:2 \leqslant x_2 \leqslant 7

and

\rm :\longmapsto\:x_3 \: is \: drawn \: from \: deck \: 1

\bf\implies \:2 \leqslant x_3 \leqslant 7

According to statement,

\rm :\longmapsto\:x_1 + x_2 + x_3 = 8

We know that

Number of ways in which n identical things can be distributed in to r different groups is given by

\boxed{ \tt{ \: Number \: of \: ways \:  =  \: ^{n+r-1}C_{r-1} \: }}

So,

Total number of ways in which one card is drawn from each deck so that sum of 3 cards is 8 is

\rm \:  =  \:\: ^{8+3-1}C_{3-1} \:

\rm \:  =  \:\: ^{10}C_{2} \:

\rm \:  =  \:\dfrac{10 \times 9}{2 \times 1}

\rm \:  =  \:45

Hence,

 \red{\rm \implies\:\boxed{ \tt{ \:Number \: of \: ways \:  =  \: 45 \: }}}

Additional Information :-

\boxed{ \tt{ \: \: ^{n}C_{r} =  \: ^{n}C_{n - r} \:}}

\boxed{ \tt{ \: \: ^{n}C_{0} =  \: ^{n}C_{n }  = 1\:}}

\boxed{ \tt{ \: \: ^{n}C_{1} =  \: ^{n}C_{n  - 1}  = n\:}}

\boxed{ \tt{ \: \: ^{n}C_{2} =  \: ^{n}C_{n  - 2}  =  \frac{n(n - 1)}{2} \:}}

\boxed{ \tt{ \: ^{n}C_{r} =  \frac{n}{r} \: ^{n - 1}C_{r - 1} \: }}

\boxed{ \tt{ \: ^{n}C_{r} \:  +  \: ^{n}C_{r - 1} \:  =  \: ^{n + 1}C_{r} \: }}

\boxed{ \tt{ \:  \frac{^{n}C_{r}}{^{n}C_{r - 1}}   =  \frac{n - r + 1}{r} \: }}

Similar questions