Math, asked by tridib50, 11 months ago

please help... class 10th Maths​

Attachments:

Answers

Answered by Anonymous
33

Question :-\\

Evaluate :

 \sf\frac{5  { \cos }^{2} 60° \:  +  \: 4 { \sec }^{2}30°\:  -  \:  \tan ^{2}45°   }  { { \sin }^{2} 30°  \:  +  \:  \cos^{2}30°  }

\\

Solution :-\\

\implies\: \sf\frac{5  { \cos }^{2} 60° \:  +  \: 4 { \sec }^{2}30°\:  -  \:  \tan ^{2}45°  }  { { \sin }^{2} 30°  \:  +  \:  \cos^{2}30°  } \\

\implies\:  \sf\frac{5 {( \frac{1}{2} )}^{2}  \: +   \: 4 {( \frac{2}{3}) }^{2}  - 1}{1} \\

\implies\:  \sf\frac{5}{4}  +  \frac{16}{3}  - 1\\

\implies\:  \sf\frac{15 + 64 - 12}{12} \\

\implies\:  \sf\frac{67}{12}

Answered by Anonymous
28

{ \tt{ \large \pink{question \colon}}}

{ \rm{\dfrac{5 {cos}^{2} 60 \degree + 4 {sec}^{2}30 \degree -  {tan}^{2}  45 \degree}{ {sin}^{2} 30 \degree +  {cos}^{2} 30 \degree} }}

{ \tt{ \large \pink{solution \colon}}}

{ \rm{\dfrac{5 {cos}^{2} 60 \degree + 4 {sec}^{2}30 \degree -  {tan}^{2}  45 \degree}{ {sin}^{2} 30 \degree +  {cos}^{2} 30 \degree} }}

{ \rm{ = \dfrac{5 (  { \frac{1}{2}) }^{2}   + 4 ({ \frac{2}{ \sqrt{3} } )}^{2} -  1}{ ({ \frac{1}{2}) }^{2}  +  ({ \frac{ \sqrt{3} }{2}) }^{2} } }}

{ \rm{ = \dfrac{5 (  { \frac{1}{4}) }  + 4 ({ \frac{4}{ 3} )} -  1}{ ({ \frac{1}{4}) }  +  ({ \frac{ 3}{4}) }} }}

{ \rm{ = \dfrac{{ \frac{5}{4} }  +  { \frac{16}{ 3} } -  1}{ { \frac{1}{4} }  +  { \frac{ 3}{4} }} }}

{ \rm{ =  \dfrac{ \dfrac{15 +  64 - 12}{12} }{ \dfrac{1 + 3}{4} } }}

{ \rm{ =  \dfrac{ \dfrac{91}{12} }{ \dfrac{ \not4}{ \not4} } }}

{ \rm{ =  \dfrac{67}{12} = 5.583 }}

{ \rm{ = 5.583}}

Similar questions