Math, asked by mnjdiaz25, 1 day ago

Please help !
Directions: Express the following exponential functions in logarithmic form. ( log2x = y)

1. 10^8 = 100, 000, 000

2. 10^-4 = 0.0001

3. 10^-7 = 0.0000001

4. 5^3 = 125

5. 3^-2 = 1/9

6. 3^0 = 1

7. 5^-3 = 0.008

8. 20^4 = 160,000

9. 9^-1/2 = 1/3

10. 5^-3 = 1/125

Answers

Answered by ranibansiwal85
0

Answer:Examples on convert Exponentials and Logarithms

1. Convert the following exponential form to logarithmic form:

(i) 104 = 10000

Solution:

104 = 10000

⇒ log10 10000 = 4

(ii) 3-5 = x

Solution:

3-5 = x

⇒ log3 x = -5

(iii) (0.3)3 = 0.027

Solution:

(0.3)3 = 0.027

⇒ log0.3 0.027 = 3

2. Convert the following logarithmic form to exponential form:

(i) log3 81 = 4

Solution:

log3 81 = 4

⇒ 34 = 81, which is the required exponential form.

(ii) log8 32 = 5/3

Solution:

log8 32 = 5/3

⇒ 85/3 = 32

(iii) log10 0.1 = -1

Solution:

log10 0.1 = -1

⇒ 10-1 = 0.1.

3. By converting to exponential form, find the values of following:

(i) log2 16

Solution:

Let log2 16 = x

⇒ 2x = 16

⇒ 2x = 24

⇒ x = 4,

Therefore, log2 16 = 4.

(ii) log3 (1/3)

Solution:

Let log3 (1/3) = x

⇒ 3x = 1/3

⇒ 3x = 3-1

⇒ x = -1,

Therefore, log3(1/3) = -1.

(iii) log5 0.008

Solution:

Let log5 0.008 = x

⇒ 5x = 0.008

⇒ 5x = 1/125

⇒ 5x = 5-3

⇒ x = -3,

Therefore, log5 0.008 = -3.

4. Solve the following for x:

(i) logx 243 = -5

Solution:

logx 243 = -5

⇒ x-5 = 243

⇒ x-5 = 35

⇒ x-5 = (1/3)-5

⇒ x = 1/3.

(ii) log√5 x = 4

Solution:

log√5 x = 4

⇒ x = (√5)4

⇒ x = (51/2)4

⇒ x = 52

⇒ x = 25.

(iii) log√x 8 = 6

Solution:

log√x 8 = 6

⇒ (√x)6 = 8

⇒ (x1/2)6 = 23

⇒ x3 = 23

⇒ x = 2.

Step-by-step explanation:

Similar questions