Math, asked by viha66, 10 months ago

please help !!!!!

don't spam​

Attachments:

Answers

Answered by Anonymous
148

\large{\underline{\underline{\mathfrak{\green{\sf{Solution:-}}}}}}.

\red{\:1}.

\large{\underline{\underline{\mathfrak{\pink{\sf{Given\:Here:-}}}}}}.

\red{\frac{\:sec^4\theta\:-\:tan^2\theta}{\:sec^2\theta+\:tan^2\theta}}.

\large{\underline{\underline{\mathfrak{\green{\sf{Explanation:-}}}}}}.

\implies\frac{(\:sec^4\theta\:-\:tan^4\theta)}{(\:sec^2\theta\:+\:tan^2\theta)}.

\implies\frac{\:(sec^2\theta)^2\:-\:(tan^2\theta)^2}{\:sec^2\theta\:+\:tan^2\theta}.

We know that ,

\red{\:(a^2-b^2)\:=\:(a+b)(a-b)}.

➡Using this identity .

\implies\frac{(\:sec^2\theta\:+\:tan^2\theta)(\:sec^2\theta\:-\:tan^2\theta)}{\:sec^2\theta\:+\:tan^2\theta}.

\implies\:(sec^2\theta\:-\:tan^2\theta).

➡We Know,

\red{(\:sec^2\theta\:-\:tan^2\theta)\:=\:1}.

\implies\:1.

_________________

\green{\:Follow\:me}.

______________________

Similar questions