Physics, asked by sonali663, 1 year ago

Please help fast... ​

Attachments:

Answers

Answered by BrainlyPopularman
1

Answer:

a =  \frac{i - j}{ \sqrt{2} }  \\  \\  |a|  =  \frac{ |i - j| }{ \sqrt{2} }  =  \frac{ \sqrt{2} }{ \sqrt{2} }  = 1 \\  \\ It's\:  \: magnitude \:  \: is \:  \: one \:  \: so \:  \: it \:  \: is\:  \: a \:  \: unit \:  \: vector.

Answered by balurocks70
0

\vec{a}\:\text{is a unit vector}

Explanation:

Show that \vec{a}=\frac{\vec{i}}{\sqrt2}-\frac{\vec{j}}{\sqrt2} is the unit vector​

Unit vector:

A vector whose magnititude or length is one is called a unit vector

Given:

\vec{a}=\frac{1}{\sqrt2}\vec{i}-\frac{1}{\sqrt2}\vec{j}

Now,

|\vec{a}|=\sqrt{(\frac{1}{\sqrt2})^2+(\frac{-1}{\sqrt2})^2}

|\vec{a}|=\sqrt{\frac{1}{2}+\frac{1}{2}}

|\vec{a}|=\sqrt{1}

|\vec{a}|=1

\implies\:\vec{a}\:\text{is a unit vector}

Similar questions