Please help fast...
Attachments:
Answers
Answered by
1
Answer:
Answered by
0
\vec{a}\:\text{is a unit vector}
Explanation:
Show that \vec{a}=\frac{\vec{i}}{\sqrt2}-\frac{\vec{j}}{\sqrt2} is the unit vector
Unit vector:
A vector whose magnititude or length is one is called a unit vector
Given:
\vec{a}=\frac{1}{\sqrt2}\vec{i}-\frac{1}{\sqrt2}\vec{j}
Now,
|\vec{a}|=\sqrt{(\frac{1}{\sqrt2})^2+(\frac{-1}{\sqrt2})^2}
|\vec{a}|=\sqrt{\frac{1}{2}+\frac{1}{2}}
|\vec{a}|=\sqrt{1}
|\vec{a}|=1
\implies\:\vec{a}\:\text{is a unit vector}
Similar questions