English, asked by evandevanwright123, 3 months ago

Please help, find out q​

Attachments:

Answers

Answered by Anonymous
8

\large\sf\underline{Question\::}

  • If N = \sf\:\frac{m}{x+q} , find the value of q when N = \sf\:1\frac{4}{5} , m = 9 and x = 2 .

\large\sf\underline{Answer\::}

  • The required value of q is \small{\mathfrak{3}} .

==‎==================

\large\bf\underline{Step~wise~calculation\::}

\small\sf\underline{Given\::}

  • N = \sf\:1\frac{4}{5}

  • m = 9

  • x = 2

\small\sf\underline{To\:find\::}

  • The value of q.

\small\sf\underline{Solution\::}

Expression : \sf\:N~=~\frac{m}{x+q}

  • Substituting the values of N , m and x as given

\sf\implies\:1\frac{4}{5}~=~\frac{9}{2+q}

  • Converting the mixed fraction into improper fraction ( numerator is greater than denominator )

\sf\implies\:\frac{9}{5}~=~\frac{9}{2+q}

  • Cross multiplying

\sf\implies\: 9(2+q) =9 \times 5

  • Multiplying the numbers

\sf\implies\: 18+9q =45

  • Transposing +18 to RHS it becomes -18

\sf\implies\: 9q =45-18

\sf\implies\: 9q =27

  • Transposing 9 to RHS it goes to the denominator

\sf\implies\: q =\frac{27}{9}

  • Reducing the fraction to lower terms

\sf\implies\: q =\cancel{\frac{27}{9}}

{\small{\underline{\boxed{\tt{\sf{\purple{\implies\:q=3}}}}}}}

\small\sf\underline{Verification\::}

We got the value of q as 3 . Let's check if it is correct. In order to check we would plug the value of N, m, x and q all together in the given equation. Doing so and solving if we get LHS = RHS , our answers would be correct. Let's begin!

Expression : \sf\:N~=~\frac{m}{x+q}

  • Substituting the values of the variables

\sf\implies\:1\frac{4}{5}\:=\frac{9}{2+3}

\sf\implies\:\frac{9}{5}\:=\frac{9}{5}

\bf\implies\:LHS\:=\:RHS

\small\fbox\green{Hence~Verified~!! }

________________________

\dag\:\underline{\sf So\:the\:required\:value~of~q\:is\:3}‎ .

‎!! Hope it helps !!

Answered by sangameshsuntyan
1

Explanation:

\large\sf\underline{Answer\::}

Answer:

The required value of q is \small{\mathfrak{3}}3 .

==‎==================

\large\bf\underline{Step~wise~calculation\::}

Step wise calculation:

\small\sf\underline{Given\::}

Given:

N = \sf\:1\frac{4}{5}1

5

4

m = 9

x = 2

\small\sf\underline{To\:find\::}

Tofind:

The value of q.

\small\sf\underline{Solution\::}

Solution:

Expression : \sf\:N~=~\frac{m}{x+q}N =

x+q

m

Substituting the values of N , m and x as given

\sf\implies\:1\frac{4}{5}~=~\frac{9}{2+q}⟹1

5

4

=

2+q

9

Converting the mixed fraction into improper fraction ( numerator is greater than denominator )

\sf\implies\:\frac{9}{5}~=~\frac{9}{2+q}⟹

5

9

=

2+q

9

Cross multiplying

\sf\implies\: 9(2+q) =9 \times 5⟹9(2+q)=9×5

Multiplying the numbers

\sf\implies\: 18+9q =45⟹18+9q=45

Transposing +18 to RHS it becomes -18

\sf\implies\: 9q =45-18⟹9q=45−18

\sf\implies\: 9q =27⟹9q=27

Transposing 9 to RHS it goes to the denominator

\sf\implies\: q =\frac{27}{9}⟹q=

9

27

Reducing the fraction to lower terms

\sf\implies\: q =\cancel{\frac{27}{9}}⟹q=

9

27

{\small{\underline{\boxed{\tt{\sf{\purple{\implies\:q=3}}}}}}}

⟹q=3

\small\sf\underline{Verification\::}

Verification:

We got the value of q as 3 . Let's check if it is correct. In order to check we would plug the value of N, m, x and q all together in the given equation. Doing so and solving if we get LHS = RHS , our answers would be correct. Let's begin!

Expression : \sf\:N~=~\frac{m}{x+q}N =

x+q

m

Substituting the values of the variables

\sf\implies\:1\frac{4}{5}\:=\frac{9}{2+3}⟹1

5

4

=

2+3

9

\sf\implies\:\frac{9}{5}\:=\frac{9}{5}⟹

5

9

=

5

9

\bf\implies\:LHS\:=\:RHS⟹LHS=RHS

\small\fbox\green{Hence~Verified~!! }

Hence Verified !!

Similar questions