Math, asked by mrinalrangare2004, 1 month ago

Please Help¶¶ Give Me Explanation ​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:y = \dfrac{ {e}^{x} - {e}^{ - x} }{{e}^{x} + {e}^{ - x}}

can be rewritten as

\rm :\longmapsto\:\dfrac{y}{1}  = \dfrac{ {e}^{x} - {e}^{ - x} }{{e}^{x} + {e}^{ - x}}

can be further rewritten as

\rm :\longmapsto\:\dfrac{1}{y}  = \dfrac{ {e}^{x} + {e}^{ - x} }{{e}^{x} -  {e}^{ - x}}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{1 + y}{1 - y}  = \dfrac{( {e}^{x} + {e}^{ - x} ) + ({e}^{x} - {e}^{ - x})}{({e}^{x} + {e}^{ - x}) - ({e}^{x} -  {e}^{ - x})}

\rm :\longmapsto\:\dfrac{1 + y}{1 - y}  = \dfrac{ {e}^{x} + {e}^{ - x}  + {e}^{x} - {e}^{ - x}}{{e}^{x} + {e}^{ - x} - {e}^{x}  +   {e}^{ - x}}

\rm :\longmapsto\:\dfrac{1 + y}{1 - y}  = \dfrac{2 {e}^{x} }{2{e}^{ - x} }

\rm :\longmapsto\:\dfrac{1 + y}{1 - y}  = \dfrac{ {e}^{x} }{{e}^{ - x} }

\rm :\longmapsto\:\dfrac{1 + y}{1 - y}  =  {e}^{x} \times {e}^{x}

\rm :\longmapsto\:\dfrac{1 + y}{1 - y}  =  {e}^{2x}

On taking log both sides, we get

\rm :\longmapsto\:log \bigg(\dfrac{1 + y}{1 - y}\bigg)  =  log{e}^{2x}

\rm :\longmapsto\:log \bigg(\dfrac{1 + y}{1 - y}\bigg)  = 2x log{e}

\rm :\longmapsto\:log \bigg(\dfrac{1 + y}{1 - y}\bigg)  = 2x

\rm :\longmapsto\:x \:  =  \: \dfrac{1}{2} log \bigg(\dfrac{1 + y}{1 - y}\bigg)

Hence,

Inverse of

\rm :\longmapsto\:y = \dfrac{ {e}^{x} - {e}^{ - x} }{{e}^{x} + {e}^{ - x}}

is

\rm :\longmapsto \: \: \dfrac{1}{2} log \bigg(\dfrac{1 + x}{1 - x}\bigg)

Hence, Option (3) is correct .

Formula Used :-

\boxed{ \rm{ log {x}^{y} = y \: logx}}

\boxed{ \rm{ loge = 1}}

\boxed{ \rm{  \frac{a}{b} =  \frac{c}{d}  \implies \:  \frac{a + b}{a - b}  =  \frac{c + d}{c - d} \: is \: componendo \: and \: dividendo}}

\boxed{ \rm{  {x}^{ - y}  =  \frac{1}{ {x}^{y} }}}

Remark :-

\rm :\longmapsto\:y = \dfrac{ {e}^{x} - {e}^{ - x} }{{e}^{x} + {e}^{ - x}}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx} \:  \dfrac{ {e}^{x} - {e}^{ - x} }{{e}^{x} + {e}^{ - x}}

\rm \:  =  \:  \: \dfrac{({e}^{x} + {e}^{ - x})\dfrac{d}{dx}({e}^{x} - {e}^{ - x}) - ({e}^{x} - {e}^{ - x})\dfrac{d}{dx}({e}^{x} + {e}^{ - x})}{ {({e}^{x} + {e}^{ - x})}^{2} }

\rm \:  =  \:  \: \dfrac{({e}^{x} + {e}^{ - x})({e}^{x} + {e}^{ - x}) - ({e}^{x} - {e}^{ - x})({e}^{x} - {e}^{ - x})}{ {({e}^{x} + {e}^{ - x})}^{2} }

\rm \:  =  \:  \: \dfrac{ {({e}^{x} + {e}^{ - x})}^{2}  -  {({e}^{x} - {e}^{ - x})}^{2} }{ {({e}^{x} + {e}^{ - x})}^{2} }

\rm \:  =  \:  \: \dfrac{4{e}^{x}{e}^{ - x}}{ {({e}^{x} + {e}^{ - x})}^{2} }

\rm \:  =  \:  \: \dfrac{4}{ {({e}^{x} + {e}^{ - x})}^{2} }

\bf\implies \:\dfrac{dy}{dx} > 0

\bf\implies \:y \: is \: always \: increasing.

\bf\implies \:y \: is \: one \: one \: as \: well \: as \: onto

\bf\implies \:inverse \: of \: y \: exist.

Similar questions