Math, asked by nisha271536, 5 months ago

please HELP HELP HELP HELP HELP​

Attachments:

Answers

Answered by amitnrw
2

Given : Sinθ + Sin²θ = 1

To Find : Cos²θ + Cos⁴θ =  

A  - 1

B     1

C    0

D   None of these

Solution:

Sinθ + Sin²θ = 1

=> Sinθ =  1- Sin²θ

=>  Sinθ = Cos²θ

Squaring both sides

=> Sin²θ = Cos⁴θ

Cos²θ + Cos⁴θ

Cos²θ  = Sinθ    and  Cos⁴θ  = Sin²θ

= Sinθ + Sin²θ

=  1

Cos²θ + Cos⁴θ  = 1

Learn More:

If sinθ + cosθ = √2cosθ, (θ ≠ 90°) then the value of tanθ is a) √2 ...

https://brainly.in/question/13094229

Answered by ITZBFF
3

 \sf{ \sin \theta \:  +   { \sin}^{2} \theta \:  =  \: 1 }

 \sf{ \sin \theta \:  =  \: 1 -   { \sin}^{2}  \theta}

 \boxed{ \boxed{ \sin \theta \:  =  \:  { \cos}^{2}  \theta}} -  -  - (1)

 \sf \red{from \: (1)}

\sin \theta \:  =  \:  { \cos}^{2}  \theta

  \sf\red{S.Q.B.S  \: we \:  get : }

  { \sin}^{2}  \theta \:  =  { ({ \cos}^{2} )}^{2}  \theta

  \boxed{\boxed{  { \sin}^{2}  \theta \:  =  {  \cos }^{4}  \theta}} -  -  - (2)

 \sf \red{  By \:  adding\: (1) \& (2)  \: we \:  get : }

 \sin \theta \:  +  \:  { \sin}^{2}  \theta \:  =  {\cos}^{2} \theta \:  +   { \cos}^{4}  \theta \:  = 1

 \sf \red{  Answer: }

 \boxed{ \boxed{  {\cos}^{2} \theta \:  +   { \cos}^{4}  \theta \:  = 1}}

Similar questions