Math, asked by radhikach2519, 1 month ago

please help I'll follow please urgently​

Attachments:

Answers

Answered by suhail2070
1

Answer:

1) \\  \\  \\   {( \sin( \alpha ) +  \cos( \alpha ))  }^{2}  -  {( \sin( \alpha ) -  \cos( \alpha ))  }^{2}  = 4 \sin( \alpha )  \cos( \alpha ) .

2) \\  \\  \\  \\  \frac{ { \sin( \alpha ) }^{4}  -  { \cos( \alpha ) }^{4} }{ { \sin( \alpha ) }^{2} -  { \cos( \alpha ) }^{2}  }   = 1.

Step-by-step explanation:

1) \\  \\  \\  {( \sin( \alpha +   \cos( \alpha )  ) }^{2}   -  {( \sin( \alpha )  -  \cos( \alpha )) }^{2} \\   =  { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2}  + 2 \sin( \alpha )   \cos( \alpha )  -  { \sin( \alpha ) }^{2}  -  { \cos( \alpha ) }^{2}  + 2 \sin( \alpha )  \cos( \alpha )  \\  \\  = 4 \sin( \alpha )  \cos( \alpha )  \\  \\  = rhs

2) \\  \\  \\  \\  \\  \frac{ { \sin( \alpha ) }^{4}  -  { \cos( \alpha ) }^{4} }{ { \sin( \alpha ) }^{2}  -  { \cos( \alpha ) }^{2} }  =    \frac{{( \sin( \alpha ) }^{2} +  { \cos( \alpha ) }^{2}  )( { \sin( \alpha ) }^{2}  -  { \cos( \alpha ) }^{2} )}{ {( \sin( \alpha ) }^{2}  -  { \cos( \alpha ) }^{2}) }  \\  \\  =  { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2}  \\  \\  = 1 \\  \\  = rhs.

Similar questions