Math, asked by pinkikumaridevi314, 10 months ago

please help
I need it urgently.​

Attachments:

Answers

Answered by Anonymous
136

\large{\underline{\underline{\mathfrak{\green{\sf{SOLUTION:-}}}}}}.

______________________

\large{\underline{\underline{\mathfrak{\sf{Given\:Here:-}}}}}.

  • \frac{a}{(b+c)}\:+\frac{b}{(c+a)}\:+\frac{c}{(a+b)}\:=\:1..(1)

____________________

\large{\underline{\underline{\mathfrak{\sf{Find\:Here:-}}}}}.

  • \frac{a^2}{(b+c)}\:+\frac{b^2}{(c+a)}\:+\frac{c^2}{(a+b)}\:=\:?

____________________

\large{\underline{\underline{\mathfrak{\sf{Explanation:-}}}}}.

\frac{a}{(b+c)}\:+\frac{b}{(c+a)}\:+\frac{c}{(a+b)}\:=\:1

Multiply both side by (a+b+c)

We get,

\implies\frac{a}{(b+c)}\:+\frac{b}{(c+a)}\:+\frac{c}{(a+b)(a+b+c)}\:=\:(a+b+c)

\implies\frac{a^2}{(b+c)}\:+\frac{b^2}{(c+a)}\:+\frac{c^2}{(c+a)}\:+\frac{a\cancel{(b+c)}}{\cancel{(b+c)}}\:+\frac{b\cancel{(c+a)}}{\cancel{(c+a)}}\:+\frac{c\cancel{(a+b)}}{\cancel{(a+b)}}\:=\:(a+b+c)

\implies\frac{a^2}{(b+c)}\:+\frac{b^2}{(c+a)}\:+\frac{c^2}{(a+b)}\:+\:(a+b+c)\:=\:(a+b+c)

\implies\frac{a^2}{(b+c)}\:+\frac{b^2}{(c+a)}\:+\frac{c^2}{(a+b)}\:+\:=\:\cancel{(a+b+c)}\:-\:\cancel{(a+b+c)}

\bold{\boxed{\boxed{\frac{a^2}{(b+c)}\:+\frac{b^2}{(c+a)}\:+\frac{c^2}{(a+b)}\:+\:=\:0}}}

that's proved

______________________

Similar questions