Math, asked by ashithashetty2009, 2 days ago

Please help I request

Attachments:

Answers

Answered by SayanTheGreat
1

Answer:

Now u can easily find the remaining values hope it helps

Attachments:
Answered by Anonymous
21

Given:-

\red{➤}\:\sf  m\angle R = (7+9x)⁰

\red{➤}\:\sf  m\angle XTR = (7x+55)⁰

\red{➤}\:\sf m \angle TSR = (2x)⁰

\\

To Find:-

\orange{☛}\:\sf x

\orange{☛}\:\sf m \angle XTR

\orange{☛}\:\sf m \angle RTS

\orange{☛}\:\sf m \angle R

\orange{☛}\:\sf m \angle S

\\

Solution:-

\underline{\tt{Formula\:Applied}}

In triangle-

\green{ \underline { \boxed{ \sf{Sum\: of\: two\: opposite\:interior\:angle= Exterior \:Angle}}}}

\green{ \underline { \boxed{ \sf{Sum\:of\:all\:interior\:angle=180⁰}}}}

\\

\underline{\tt\pink{Putting \:Values-}}

\sf Sum\: of\: two\: opposite\:interior\:angle= Exterior \:Angle

\begin{gathered}\\\quad\longrightarrow\quad \sf m\angle R+m\angle S = m\angle XTR \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf (7+9x)+(2x) = (7x+55)\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 7+9x+2x = 7x+55\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 11x+7= 7x+55\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 11x-7x= 55-7\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 4x= 48\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf x= \frac{48}{4}\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \red{\boxed{\sf x= 12}}\\\end{gathered}

Now putting values to find required angles-

\sf  m\angle R = (7+9x)⁰

\sf   \qquad \:\:= (7+9\times12)⁰

\sf   \qquad \:\:= (7+108)⁰

\sf  \purple{\boxed{\sf m\angle R = 115⁰}}

\\

\sf m\angle XTR = (7x+55)⁰

\sf  \qquad \: \:\:= (7\times 12+55)⁰

\sf  \qquad \: \:\:= (84+55)⁰

\sf \green{\boxed{m\angle XTR = 139⁰}}

\\

\sf  m\angle S= (2x)⁰

\sf  \qquad \:\:= (2 \times 12)⁰

\sf \orange{\boxed{\sf m\angle S = 24⁰}}

\\

Also,

\bf{\red{Sum\:of\:all\:interior \:angle \:of\:angle\:of\:triangle}=180⁰}

\begin{gathered}\\\quad\longrightarrow\quad \sf m\angle S+m\angle R+m\angle RTS =180⁰ \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 24⁰+115⁰+m\angle RTS =180⁰ \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf 139⁰+m\angle RTS =180⁰ \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf m\angle RTS =180⁰-139⁰ \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \red{\boxed{\sf m\angle RTS =41⁰}} \\\end{gathered}

Similar questions