please help !
If sec theta + tan theta = k then prove that ( k^2 + 1 ) sin theta = k ^2 - 1
Answers
Answered by
3
=> sec²A - tan²A = 1 (identity)
=> (secA + tanA)(secA - tanA) = 1
=> (k)(secA - tanA) = 1
=> (secA - tanA) = 1/k
Adding secA + tanA and secA - tanA:
=> 2secA = k + 1/k
=> 2/cosA = (k² + 1)/k
=> 2k/(k² + 1) = cosA
We know, sin²A = 1 - cos²A. Thus,
=> sin²A = 1 - [ 2k/(k² + 1) ]²
=> sin²A = [(k² + 1)² - (2k)²]/(k² + 1)²
=> (k² + 1)²sin²A = (k⁴ + 1 + 2k² - 4k²)
=> (k² + 1)²sin²A = (k² - 1)²
=> (k² + 1)sinA = k² - 1
Answered by
3
Step-by-step explanation:
please write identities used in this yourself
Attachments:
Similar questions
Math,
28 days ago
Psychology,
28 days ago
Social Sciences,
1 month ago
Math,
9 months ago
Math,
9 months ago