Physics, asked by ayushmaancristiano, 11 months ago

Please help im in despirate trouble tomorrow is my exam

Let only class 11th guys and gals answer this

Attachments:

Answers

Answered by BrainlyConqueror0901
5

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Angle=cos^{-1}\frac{1}{6}}}

{\bold{\underline{\underline{Step-by-Step\:explanation:}}}}

 \underline  \bold{given : } \\   \implies A =   \hat{i} + 2 \hat{j} +  \hat{k} \\  \\  \implies B= 2 \hat{i} -  \hat{j} +  \hat{k} \\  \\   \underline \bold{to \: find : }\\  \implies Angle \:between \: vector \: A\: and \: B= ?

• According to given question :

 \implies  \cos \theta =  \frac{ \vec{A} \times  \vec{B}}{ | \vec{S}|  | \vec{B}| }  \\  \\  \implies  \cos \theta =  \frac{ (\hat{i} + 2\hat{j} + \hat{k} )\times (2 \hat{i} -  \hat{j} +  \hat{k})}{ | \sqrt{6} | | \sqrt{6} |  }  \\  \\  \implies cos \theta =  \frac{2( \hat{i }\times \hat{ i}) -  2( \hat{j}  \times \hat{j}) + 1( \hat{k} \times  \hat{k}}{6}  \\ \\  \bold{\hat{i} \times  \hat{i} = 1} \\   \\ \bold{\hat{j} \times  \hat{j} = 1}\\  \\  \bold{ \hat{k} \times  \hat{k} = 1}\\  \\  \implies cos \theta  =  \frac{2 \times 1  - 2 \times 1 + 1 \times 1}{6}  \\  \\  \implies cos \theta  =  \frac{\cancel2 - \cancel2 + 1}{6}  \\  \\  \implies cos \theta  =  \frac{1}{6}  \\  \\   \bold{\implies  \theta  =  {cos}^{ - 1}  \frac{1}{6} } \\   \\  \bold{\therefore Angle \: between \: A\: and \: B \: is \:  {cos}^{ - 1}  \frac{1}{6} }

Answered by ishiribhu09
1

Answer:

Explanation:

Hope it helps

Attachments:
Similar questions