Math, asked by balaji648balaji, 4 months ago

please help immediately​

Attachments:

Answers

Answered by Anonymous
26

S O L U T I O N :

Let,

  • A(6 , - 4)
  • B(-2, - 4)
  • C(2, 10)

Applying distance formula,

XY = (x2 - x1)² + (y2 - y1)²

Case (I),

A(6 , - 4) & B(-2, - 4)

[ Put the values in distance formula ]

⟶ AB = √(-2 - 6)² + (-4 - (-4)²

⟶ AB = √(-8)² + (-4 + 4)²

⟶ AB = √(-8)² + (0)²

⟶ AB = √64

AB = 8 units ----(1)

Case (II),

B(-2, - 4) & C(2, 10)

[ Put the values in distance formula ]

⟶ BC = √(2 - (-2)² + (10 - (-4)²

⟶ BC = √(2 + 2)² + (10 + 4)²

⟶ BC = √(4)² + (14)²

⟶ BC = √16 + 196

BC = √212 units -----(2)

Case (III),

A(6, - 4) & C(2 , 10)

[ Put the values in distance formula ]

⟶ AC = √(2 - 6)² + (10 - (-4)²

⟶ AC = √(-4)² + (10 + 4)²

⟶ AC = √(-4)² + (14)²

⟶ AC = √16 + 196

AC = 212 units ------(3)

From equation (2) & (3),

BC = AC

Hence,

ΔACB is isosceles triangle.

Therefore,

A(6 , - 4), B(-2, - 4) & C(2, 10) is form an isosceles triangle.

Attachments:
Similar questions