Math, asked by anasmohammadarif, 1 month ago

Please help in finding the answer

Attachments:

Answers

Answered by MysticSohamS
1

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

so \: here \:  \\ for \: a \: certain \:  \: complex \: number \\ z = 2 - i \\ w = 1 + 3i \\  \\ hence \: then \\  \frac{z {}^{2} }{w - i}  = a + ib \\  \\  =  \frac{(2 - i) {}^{2} }{1 + 3i - i}  \\  \\  =  \frac{4 + i {}^{2}  - 4i}{ 1 + 2i}  \\  \\  =  \frac{4 + ( - 1) - 4i}{1 + 2i}  \\  \\  =  \frac{3 - 4i}{1 + 2i}  \\  \\  =  \frac{3 - 4i}{1 + 2i}  \times  \frac{1  -  2i}{1 - 2i}  \\  \\  =  \frac{(3 - 4i)(1 - 2i)}{(1) {}^{2} - (2i) {}^{2}  }  \\  \\  =  \frac{3 - 6i - 4i + 8i {}^{2} }{1 - 4i {}^{2} }  \\  \\  =  \frac{3 - 10i + 8( - 1)}{1 - 4( - 1)}  \\  \\  =  \frac{3 - 8 - 10i}{1 + 4}  \\  \\  =  \frac{ - 5 - 10i}{5}  \\  \\  =  \frac{5( - 1 - 2i)}{5}  \\  \\  =  - 1 - 2i \\  \\ comparing \: real \: and \: imaginary \: parts \\ a =  - 1 \\ b =  - 2

we \: know \: that \\  |z|  =  \sqrt{a {}^{2}  + b {}^{2} }  \\  \\  =  \sqrt{( - 1) {}^{2} + ( - 2) {}^{2}  }  \\  \\  =  \sqrt{1 + 4}  \\  \\ |z|   =  \sqrt{5}

Similar questions
Math, 9 months ago