Please help in solving this question.......
Attachments:
Answers
Answered by
0
Answer:
(4) 19
Step-by-step explanation:
Given equation is x² - x(λ - 2) + (λ² + 3λ + 5)=0
Since, α & β are real roots of the given equation,
So, the equation's discriminant will be greater than or equal to 0
so,
(λ - 2)² - 4(λ² + 3λ + 5) ≥ 0
=> λ² - 4λ + 4 - 4λ² - 12λ - 20 ≥ 0
=> -3λ² - 16λ - 16 ≥ 0
=> 3λ² + 16λ + 16 ≤ 0
=> 3λ² + 12λ + 4λ + 16 ≤ 0
=> 3λ (λ + 4) + 4 (λ + 4) ≤ 0
=> (λ + 4)(3λ + 4) ≤ 0
=> λ € ( - 4, - 4/3 )
Now, we have,
α + β = (λ - 2) & αβ = (λ² + 3λ + 5)
α² + β² = (α + β)² - 2αβ
= (λ -2)² - 2(λ² + 3λ + 5)
= λ² - 4λ + 4 - 2λ² - 6λ - 10
= - λ² - 10λ - 6
= - (λ² + 10λ +25 - 19)
= - (λ + 5)² + 19
Since, (a+b)²≥0,
Hence the maximum value of α² + β² is 19
Similar questions