Math, asked by prateek369691, 11 months ago

please help in this of rd sharma ​

Attachments:

Answers

Answered by shadowsabers03
1

(1)

Assume to reach the contradiction that \displaystyle\sf{\dfrac{2+\sqrt3}{5}} is a rational number.

Let,

\displaystyle\longrightarrow\sf{x=\dfrac{2+\sqrt3}{5}}

where \displaystyle\sf{x} is assumed to be a rational number as earlier.

Then,

\displaystyle\longrightarrow\sf{x^2=\dfrac{(2+\sqrt{3})^2}{5^2}}

\displaystyle\longrightarrow\sf{x^2=\dfrac{7+4\sqrt3}{25}}

\displaystyle\longrightarrow\sf{\sqrt3=\dfrac{25x^2-7}{4}}

In this equation, since \displaystyle\sf{x} is rational, so is \displaystyle\sf{x^2,} and hence the RHS. But the LHS, i.e., \displaystyle\sf{\sqrt3,} is irrational and cannot be expressed as a fraction.

This contradicts our earlier assumption and hence proved that \displaystyle\sf{\dfrac{2+\sqrt3}{5}} is irrational.

(2) We have,

\displaystyle\longrightarrow\sf{a^n-b^n=(a-b)\sum_{k=1}^na^{n-k}b^{k-1}}

Therefore,

\displaystyle\longrightarrow\sf{9^{2n}-4^{2n}=(9-4)\sum_{k=1}^{2n}9^{2n-k}4^{k-1}}

\displaystyle\longrightarrow\sf{9^{2n}-4^{2n}=5\sum_{k=1}^{2n}9^{2n-k}4^{k-1}}

\displaystyle\longrightarrow\sf{9^{2n}-4^{2n}=5(9^{2n-1}+9^{2n-2}\cdot4+9^{2n-3}\cdot4^2+\dots\!\ +9\cdot4^{2n-2}+4^{2n-1})}

Hence \displaystyle\sf{9^{2n}-4^{2n}} is always divisible by 5.

Similar questions