Math, asked by doharekartik, 10 months ago

please help in this question ​

Attachments:

Answers

Answered by Aggarwala27
0

Answer:

well is the blue mark a correction to the question or just a random mark

Answered by sanketj
0

 \frac{ {cos}^{2} x - 3cosx + 2}{ {sin}^{2} x}  = 1 \\  {cos}^{2} x - 3cosx + 2 =  {sin}^{2} x \\  {cos}^{2} x - 3cosx + 2 = 1 -  {cos}^{2} x \:  \: \:  \:  \:  \:  ...( {sin}^{2} x +  {cos}^{2} x = 1) \\ 2 {cos}^{2} x - 3cosx + 1 = 0 \\ 2 {cos}^{2} x - 2cosx - cosx + 1 = 0 \\ 2cosx(cosx - 1) - 1(cosx - 1) = 0 \\ (2cosx - 1)(cosx - 1) = 0 \\  \\ 2cosx - 1 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \:  \:  \: cosx - 1 = 0 \\ cosx =  \frac{1}{2} \:  or \: 1 \\ cosx = cos {60}^{o}  \: or \: cos {0}^{o}  \\ x =  {60}^{o}   \: or \:  {0}^{o} \\  \\ but \: x \: cannot \: be \: equal \: to \: zero \: since \: in \:  the \: expression \:  \\  {sin}^{2} x \: is \: in \: the \: denominator.  \\ when \: x = 0 \\ sinx = 0 \: therefore \:  {sin}^{2} x = 0 \\ division \: of \: anything \: by \: zero \: is \: not \: defined \\  \\ hence \\ x \:  =  {60}^{o}

Similar questions