Math, asked by Tanushree5097, 10 months ago

Please help , it's urgent
(Don't comment if don't know the answer)​

Attachments:

Answers

Answered by Anonymous
2

Answer:

( \frac{ \tan(60)  + 1}{ \tan(60) - 1 }  ){}^{2}  =  \frac{1 +  \cos(30) }{1 -  \cos(30) }  \\  \\  \\  \tan(60)  =  \sqrt{3}  \:  \: and \:  \:  \cos(30)  =  \frac{ \sqrt{3} }{2}  \\  \\ put \: the \: value \: in \: above \: equation \\  (\frac{\sqrt{3}  + 1}{ \sqrt{3}  - 1} ) {}^{2}  =  \frac{1 +  \frac{ \sqrt{3} }{2} }{1 -  \frac{ \sqrt{3} }{2} }  \\  \frac{( { \sqrt{3}) }^{2}  + 1 + 2 \sqrt{3} }{( \sqrt{3}  {)}^{2}  + 1 - 2 \sqrt{3} }  =  \frac{ \frac{2 +  \sqrt{3} }{2} }{ \frac{2 -  \sqrt{3} }{2} }  \\  \frac{3 + 1 + 2 \sqrt{3} }{3 + 1 - 2 \sqrt{3} }  =  \frac{2 +  \sqrt{3} }{2}  \times  \frac{2}{2 -  \sqrt{3} }  \\  \frac{4 + 2 \sqrt{3} }{4 - 2 \sqrt{3} }  =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \\  \frac{2(2 +  \sqrt{3}) }{2(2 -  \sqrt{3}) }  =  \frac{2 +  \sqrt{3} }{2  -   \sqrt{3} }  \\  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  =  \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }

I hope u will find ur answer plz mark brainliest answer

Answered by Anonymous
0

Answer:

Chrome

Step-by-step explanation:

1.open chrome browser

2.search it up

3. S T O N K S.

Similar questions