Math, asked by muralimohan36, 11 months ago

please help me ........​

Attachments:

Answers

Answered by Anonymous
8

Answer:

1

Solution:

 \sf \bigg( \dfrac{a^p }{a^q}  \bigg)^{p + q}  \times \bigg( \dfrac{a^q}{a^r}  \bigg)^{q + r}  \times  \bigg( \dfrac{a^r }{a^p}  \bigg)^{r + p}

 \sf  = ( a^{p - q})^{p + q}  \times ( a^{q - r})^{q - r} \times  ( a^{r - p})^{r + p}

 \sf  = a^{(p - q)(p + q)}  \times a^{(q - r)(q - r)} \times  a^{(r - p)(r + p)}

 \sf  = a^{p^2 -  {q}^{2} }  \times a^{ {q}^{2}  - {r}^{2}  } \times  a^{ {r}^{2} -  {p}^{2}  }

 \sf  = a^{p^2 -  {q}^{2}  + {q}^{2}  - {r}^{2}   + {r}^{2} -  {p}^{2}  }

 \sf  = a^0 = 1

Laws of exponents used:

  • a^m / a^n = a^( m - n )

  • ( a^m )^n = a^( mn )

  • a^m × a^n = a^( m + n )

  • a^0 = 1

Identity used:

  • ( x - y )( x + y ) = x² - y²
Answered by MarshmellowGirl
37

 \large \underline{ \red{ \boxed{ \bf \orange{Required \: Answer}}}}

Attachments:
Similar questions