Math, asked by hariombudruk11, 7 months ago

please help me!!!!!​

Attachments:

Answers

Answered by Anonymous
1

GIVEN :-

 \rm{  \dfrac{sin \: a   + cos \: a}{sin \: a  -  cos \: a} \:  +  \:  \dfrac{sin  \: a - cos \: a}{sin \: a + cos \: a}  }

TO FIND :-

\rm{  value \: of \:  \:  \dfrac{sin \: a   + cos \: a}{sin \: a  -  cos \: a} \:  +  \:  \dfrac{sin  \: a - cos \: a}{sin \: a + cos \: a}  }

SOLUTION :-

FIRST WE WILL ADD THE TERMS

 \implies  \boxed{\rm{  \dfrac{a}{b}  +  \dfrac{b}{a} } =  \dfrac{ {a}^{2} +  {b}^{2}  }{ab} }

 \implies  \rm{  \bf{where  \: a = sin \: a  +  cos \: a \:} }

\implies  \rm{ \bf where  \: b \: = sin \: a   - cos \: a \:}

NOW PUT THE VALUE OF A and B

 \implies \rm{ \dfrac{(sin \: a  + cos \: a) ^{2}  \:  +( {sin \: a - cos \: a})^{2}  }{(sin \: a + cos \: a)(sin \: a - cos \: a)} }

 \implies  \boxed{\rm{ ( a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}

 \implies   \rm{  \bf{where  \: a = sin \: a  +  cos \: a \:} }

\implies   \rm {  \bf{where  \: b \: = sin \: a   - cos \: a \:}}

 \implies \rm{ \dfrac{(sin \: a  + cos \: a) ^{2}  \:  +( {sin \: a - cos \: a})^{2}  }{(sin ^{2} a \ - cos ^{2}  \: a)} }

\implies \boxed{  \rm{ {(a + b)}^{2} =  {a}^{2} +  {b}^{2}  + 2ab  }}

\implies \boxed{  \rm{ {(a  -  b)}^{2} =  {a}^{2} +  {b}^{2}   - 2ab  }}

NOW , ( a + b )² + ( a - b )² :-

\implies   \rm{  ( {a}^{2} +  {b}^{2}  + 2ab ) +   ({a}^{2} +  {b}^{2} - 2ab   })

\implies   \rm{  2{a}^{2} + 2 {b}^{2}     }

 \implies \boxed{ \rm2( {a}^{2} +  {b}^{2} ) }

 \implies  \rm{  \bf{where  \: a = sin  \: a} }

\implies  \rm{  \bf{where  \: b= cos \: a} }

PUT THE VALUE OF A and B

 \implies \rm{ \dfrac{2(sin \:  ^{2} a  + cos   \: ^{2}  \: a)}{(sin ^{2} a \ - cos ^{2}  \: a)} }

 \implies \boxed{ \rm{ {sin}^{2} a +  {cos}^{2}a } = 1}

 \implies \rm{ \dfrac{2(1)}{(sin ^{2} a \ - cos ^{2}  \: a)} }

\implies \boxed{ \boxed{ \rm{ \dfrac{2}{(sin ^{2} a \ - cos ^{2}  \: a)} }}}

OTHER INFORMATION :-

TRIGNOMETRIC IDENTITIES :-

  • SIN²∅ + COS²∅ = 1
  • SEC²∅ - TAN²∅ = 1
  • COSEC²∅ - COT²∅ = 1

TRIGNOMETRIC COMPLEMENTARY ANGLES :-

  • SIN 90 = COS ( 90 - ∅ )
  • COS 90 = SIN ( 90 - ∅ )
  • TAN 90 = COT ( 90 - ∅ )
  • COT 90 = TAN ( 90 - ∅ )
  • COSEC 90 = SEC ( 90 - ∅ )
  • SEC 90 = COSEC ( 90 - ∅ )

TRIGNOMATERIC RATIOS :-

  • SIN ∅ = 1/ COSEC ∅
  • COS ∅ = 1/ SEC ∅
  • TAN ∅ = 1/ COT ∅
  • TAN ∅ = SIN ∅ / COS ∅
  • COT ∅ = COS ∅ / SIN ∅
Similar questions