Math, asked by drehkdrizzys, 11 months ago

please help me answer this differentiation question

Attachments:

Answers

Answered by pratyushnishchal
0

y=e^(4*x^2)

diffrentiate y

dy/dx=(4x^2)*8*x*e^(4*x^2)

d2y/dx2=(4x^2)*(8*x)*e^(4*x^2)*8*x*4*x^2*e^(4*x^2)+8*x*8*x*e^(4*x^2)+4*x^2*8*e^(4*x^2)

now substitute in the equation to prove it

Answered by brokendreams
0

Hence proved that y=e^{4x^{2} } satisfies the \frac{1}{4} \frac{d^{2} y}{dx^{2} }-2x\frac{dy}{dx}  -2y=0 .

Step-by-step explanation:

We are given,

y=e^{4x^{2} }  

and we have to prove  

\frac{1}{4} \frac{d^{2} y}{dx^{2} }-2x\frac{dy}{dx}  -2y=0 .

  • Formula used,

Differentiation of exponential term if y=e^{ax} ,

  1. \frac{dy}{dx} =e^{ax}.\frac{d}{dy}  (ax)
  2. \frac{d}{dx} (A*B)=A*\frac{d}{dx} B+B*\frac{d}{dx} A
  3. \frac{d}{dx} (x^{n})=nx^{n-1}
  • Solving given term,

We have y=e^{4x^{2} }  

by using formula (1) we get Differentiation of y is,

\frac{dy}{dx} =e^{4x^{2} } *\frac{d}{dx} (4x^{2} )

    =e^{4x^{2} } *4*2(x)^{2-1}

    =e^{4x^{2} } *8x

\frac{dy}{dx}=8xe^{4x^{2} }

now by using formula (2) and formula (3) we get the double differentiation,

\frac{dy}{dx} =e^{4x^{2} } *8x

\frac{d^{2} y}{dx^{2} } =e^{4x^{2} } *\frac{d}{dx} (8x)+8x*\frac{d}{dx} e^{4x^{2} }

     =e^{4x^{2} } *8*1(x)^{1-1} +8x*(e^{4x^{2} } *4*2(x)^{2-1})

     =8e^{4x^{2} }  +8x*e^{4x^{2} }*4*2*(x)^{2-1}

     =8e^{4x^{2} }  +64x^{2} *e^{4x^{2} }

to prove the question, we take 4 as common from R.H.S and take it to L.H.S,

\frac{d^{2} y}{dx^{2} } =8e^{4x^{2} }  +64x^{2} *e^{4x^{2} }

     =4[2e^{4x^{2} }  +16x^{2} e^{4x^{2} }]

\frac{1}{4} \frac{d^{2} y}{dx^{2} } =2e^{4x^{2} }  +16x^{2} e^{4x^{2} }

we have y=e^{4x^{2} }   and  \frac{dy}{dx}=8xe^{4x^{2} }  so we can write,

\frac{1}{4} \frac{d^{2} y}{dx^{2} } =2e^{4x^{2} }  +2*8x^{2} e^{4x^{2} }

\frac{1}{4} \frac{d^{2} y}{dx^{2} } =2y +2\frac{dy}{dx}

taking R.H.S to L.H.S,

\frac{1}{4} \frac{d^{2} y}{dx^{2} } -2y -2\frac{dy}{dx}=0

in this way we proved our given question.

Similar questions