please Help me by answering this question.
Attachments:
Answers
Answered by
1
Answer:
are of triangle =1/2 x1(y2-y3)+x2(y3-y1)+x3(y1-y2)=0 then the points are coliner
1/2*a(1-5)+2(5-a)+5(a-1)=0
then a=5
Answered by
1
if the points are collinear then the area a of triangle formed by them must be equal to zero.
area of triangle ABC= 0
1/2 [x1(y2-y3)+x2 (y3-y1)+x3 (y1-y2)]=0
1/2 [a (1-a)+2 (a-3)+5 (3-1)]=0
1/2 [a-a^2+2a-6+10]=0
1/2 [-a^2+3a+4]=0
-a^2+3a+4=0/2
-a^2+3a+4=0
a^2-3a-4=0
on comparing with ax^2+bx+c
we get a=1,b=-3a,c=-4
now D=b^2-4ac
D=(-3)^2-4×1×(-4)
D=9+16
D=25
now using quadratic formula
area of triangle ABC= 0
1/2 [x1(y2-y3)+x2 (y3-y1)+x3 (y1-y2)]=0
1/2 [a (1-a)+2 (a-3)+5 (3-1)]=0
1/2 [a-a^2+2a-6+10]=0
1/2 [-a^2+3a+4]=0
-a^2+3a+4=0/2
-a^2+3a+4=0
a^2-3a-4=0
on comparing with ax^2+bx+c
we get a=1,b=-3a,c=-4
now D=b^2-4ac
D=(-3)^2-4×1×(-4)
D=9+16
D=25
now using quadratic formula
mohit6558:
hi
Similar questions